Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov-Dec;17(6):2131-2140.
doi: 10.1109/TCBB.2019.2911071. Epub 2020 Dec 8.

XGBoost Model for Chronic Kidney Disease Diagnosis

XGBoost Model for Chronic Kidney Disease Diagnosis

Adeola Ogunleye et al. IEEE/ACM Trans Comput Biol Bioinform. 2020 Nov-Dec.

Abstract

Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively.

PubMed Disclaimer

Publication types