Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar;99(3-1):032121.
doi: 10.1103/PhysRevE.99.032121.

Classical stochastic systems with fast-switching environments: Reduced master equations, their interpretation, and limits of validity

Affiliations

Classical stochastic systems with fast-switching environments: Reduced master equations, their interpretation, and limits of validity

Peter G Hufton et al. Phys Rev E. 2019 Mar.

Abstract

We study classical Markovian stochastic systems with discrete states, coupled to randomly switching external environments. For fast environmental processes we derive reduced dynamics for the system itself, focusing on corrections to the adiabatic limit of infinite timescale separation. We show that this can lead to master equations with bursting events. Negative transition rates can result in the reduced master equation, leading to unphysical short-time behavior. However, the reduced master equation can describe stationary states better than a leading-order adiabatic calculation, similar to what is known for Kramers-Moyal expansions in the context of the Pawula theorem [R. F. Pawula, Phys. Rev. 162, 186 (1967)PHRVAO0031-899X10.1103/PhysRev.162.186; H. Risken and H. Vollmer, Z. Phys. B 35, 313 (1979)ZPBBDJ0340-224X10.1007/BF01319854]. We provide an interpretation of the reduced dynamics in discrete time and a criterion for the occurrence of negative rates for systems with two environmental states.

PubMed Disclaimer