Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 1;11(3):e275-e281.
doi: 10.4317/jced.55522. eCollection 2019 Mar.

Mechanical and dentin bond strength properties of the nanosilver enriched glass ionomer cement

Affiliations

Mechanical and dentin bond strength properties of the nanosilver enriched glass ionomer cement

Zahra Jowkar et al. J Clin Exp Dent. .

Abstract

Background: The aim of this study was to investigate the mechanical properties and dentin microshear bond strength of a conventional glass ionomer cement (GIC) compared to GIC supplemented with silver nanoparticles (SNPs) at 0.1% and 0.2% (w/w).

Material and methods: SNPs were incorporated into a conventional GIC at 0.1% and 0.2% (w/w). The unmodified GIC was used as the control group. Compressive strength, flexural strength, and micro-shear bond strength (µSBS) to dentin were evaluated using a universal testing machine. Surface microhardness was determined using a Vickers microhardness tester. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test.

Results: GICs containing 0.1% and 0.2% (w/w) SNPs significantly improved compressive strength, surface microhardness, and dentin µSBS compared to the unmodified GIC (p<0.05). A significant increase in the flexural strength was found for the GIC containing 0.2% (w/w) SNPs (p<0.05). However, the GIC containing 0.1% (w/w) SNPs did not affect flexural strength.

Conclusions: GIC supplemented with SNP is a promising material for restoration because of its improved mechanical and bond strength properties. Therefore, it may be suggested for use especially in higher stress-bearing site restorations. Key words:Glass ionomer cement, mechanical properties, micro-shear bond strength, silver nanoparticle.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest statement:The authors have declared that no conflict of interest exist.

Figures

Figure 1
Figure 1
The wrapped stainless steel ligature around the base of the GIC micro-cylinder for measurement of µSBS.

Similar articles

Cited by

References

    1. Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Sakagami H, Morales-Luckie RA, Nakajima H. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. Journal of Applied Oral Science. 2015;23:321–8. - PMC - PubMed
    1. Xie D, Weng Y, Guo X, Zhao J, Gregory RL, Zheng C. Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dental Materials. 2011;27:487–96. - PubMed
    1. Doozandeh M, Firouzmandi M, Mirmohammadi M. The Simultaneous Effect of Extended Etching Time and Casein Phosphopeptide-Amorphous Calcium Phosphate containing Paste Application on Shear Bond Strength of Etch-and-rinse Adhesive to Caries-affected Dentin. The journal of contemporary dental practice. 2015;16:794–9. - PubMed
    1. Kasraei S, Sami L, Hendi S, AliKhani M Y, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restorative dentistry & endodontics. 2014;39:109–14. - PMC - PubMed
    1. Bürgers R, Eidt A, Frankenberger R, Rosentritt M, Schweikl H, Handel G. The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Archives of Oral Biology. 2009;54:595–601. - PubMed

LinkOut - more resources