Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 15;11(19):17350-17358.
doi: 10.1021/acsami.9b00029. Epub 2019 May 2.

Metal-Organic Frameworks with Potential Application for SO2 Separation and Flue Gas Desulfurization

Affiliations

Metal-Organic Frameworks with Potential Application for SO2 Separation and Flue Gas Desulfurization

Philipp Brandt et al. ACS Appl Mater Interfaces. .

Abstract

Sulfur dioxide (SO2) is an acidic and toxic gas and its emission from utilizing energy from fossil fuels or in industrial processes harms human health and environment. Therefore, it is of great interest to find new materials for SO2 sorption to improve classic flue gas desulfurization. In this work, we present SO2 sorption studies for the three different metal-organic frameworks MOF-177, NH2-MIL-125(Ti), and MIL-160. MOF-177 revealed a new record high SO2 uptake (25.7 mmol·g-1 at 293 K and 1 bar). Both NH2-MIL-125(Ti) and MIL-160 show particular high SO2 uptakes at low pressures ( p < 0.01 bar) and thus are interesting candidates for the removal of remaining SO2 traces below 500 ppm from flue gas mixtures. The aluminum furandicarboxylate MOF MIL-160 is the most promising material, especially under application-orientated conditions, and features excellent ideal adsorbed solution theory selectivities (124-128 at 293 K, 1 bar; 79-95 at 353 K, 1 bar) and breakthrough performance with high onset time, combined with high stability under both humid and dry SO2 exposure. The outstanding sorption capability of MIL-160 could be explained by DFT simulation calculations and matching heat of adsorption for the binding sites Ofuran···SSO2 and OHAl-chain···OSO2 (both ∼40 kJ·mol-1) and Ofuran/carboxylate···SSO2 (∼55-60 kJ·mol-1).

Keywords: DFT simulation; breakthrough; flue gas desulfurization; gas selectivity; metal−organic framework; sulfur dioxide sorption.

PubMed Disclaimer

LinkOut - more resources