Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Apr:55:66-76.
doi: 10.1016/j.sbi.2019.03.022. Epub 2019 Apr 18.

Applications of machine learning in GPCR bioactive ligand discovery

Affiliations
Review

Applications of machine learning in GPCR bioactive ligand discovery

Amara Jabeen et al. Curr Opin Struct Biol. 2019 Apr.

Abstract

GPCRs constitute the largest druggable family having targets for 475 Food and Drug Administration (FDA) approved drugs. As GPCRs are of great interest to pharmaceutical industry, enormous efforts are being expended to find relevant and potent GPCR ligands as lead compounds. There are tens of millions of compounds present in different chemical databases. In order to scan this immense chemical space, computational methods, especially machine learning (ML) methods, are essential components of GPCR drug discovery pipelines. ML approaches have applications in both ligand-based and structure-based virtual screening. We present here a cheminformatics overview of ML applications to different stages of GPCR drug discovery. Focusing on olfactory receptors, which are the largest family of GPCRs, a case study for predicting agonists for an ectopic olfactory receptor, OR1G1, compares four classical ML methods.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources