Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019;71(4):397-402.
doi: 10.3233/CH-199003.

Leg electrical resistance predicts venous blood viscosity and hematocrit

Affiliations
Free article

Leg electrical resistance predicts venous blood viscosity and hematocrit

Emmanuelle Varlet-Marie et al. Clin Hemorheol Microcirc. 2019.
Free article

Abstract

We previously reported that whole body bioelectrical impedance analysis (BIA) measurements are correlated to some hemorheologic factors, suggesting a relationship between viscosity factors and electric properties of flowing blood not only in vitro but also in vivo. Recently we reported that with segmental BIA (analyzing the body considered as composed of 5 cylinders) predictive equations for various determinants of blood viscosity were closer than for the wole body. Another widely used BIA technique uses leg-to-leg impedance measurements so that two cylinders (the two legs) are analyzed. We investigated whether impedance measured with this technique (Tanita TBF-300) is also a predictor of blood viscosity factors. From viscometric measurements performed on venous blood drawn in recreative athletes over the range of shear rates 1 to 6000 s-1 (RHEOMETRE Anton Paar CP 50-1), we found a correlation between leg-leg resistance at 50 kHz (Rx[50 kHz]) and blood viscosity at 1000 s-1 (η1000= 0.0051 Rx[50 kHz] + 1.3265; r = 0.521 p = 0.028 yielding a prediction of η1000 (Bland Altman plot: bias 0.05 [RANGE - 0.24; 0.34]. Neither plasma viscosity nor the red cell rheology index «k» of Quemada's model are correlated with Rx[50 kHz], but hematocrit (Hct) does (Hct (%) = 0.0217 Rx[50 kHz] + 33.783; r = 0.480 p = 0.044) yielding a prediction of Hct (Bland Altman plot: bias - 0.11, [range - 1.67; 1.45]. The discrepancy between actual and predicted Hct is also correlated with resistance at 50 kHz (r = 0.575 p = 0.031) as does the discrepancy between actual and predicted Hct/viscosity ratio (r = -0.651 p = 0.006). Therefore, as other previously studied methods, leg to leg BIA predicts viscosity, suggesting that blood rheology may influence the passage of an electric current in the legs.

Keywords: Myrenne aggregometer; Red blood cell aggregation; Segmental bioelectrical impedance; electrical conductance; hematocrit; light transmission.

PubMed Disclaimer

Similar articles

Cited by