Chimeric antigen receptor T cell persistence and memory cell formation
- PMID: 31009109
- DOI: 10.1111/imcb.12254
Chimeric antigen receptor T cell persistence and memory cell formation
Abstract
It is now becoming clear that less differentiated naive and memory T cells are superior to effector T cells in the transfer of immunity for adoptive cell therapy. This review will outline the challenges faced by chimeric antigen receptor (CAR) T cell therapy in the generation of persistence and memory for CAR T cells, and summarize recent strategies to improve CAR T cell persistence, with a focus on memory cell formation. The relevance of enhancing persistence in more differentiated effector T cells is also covered, because genetic and pharmacological interventions may prolong effector T cell activity and lifespan, thereby improving anti-cancer activity. In particular, it may be possible to enforce epigenetic changes in differentiated T cells to enhance memory CAR T cell formation. Optimizing the generation of self-renewing T cell populations (e.g. memory cells), while maintaining differentiated effector T cells through epigenome modification, will help overcome barriers to T cell expansion and survival, thereby improving clinical outcomes in CAR T cell therapy.
Keywords: CAR T cells; adaptive immunity; cancer; cellular immunity; immunological memory; immunology; innate immune cells; persistence.
© 2019 Australian and New Zealand Society for Immunology Inc.
References
-
- Gardner RA, Finney O, Annesley C, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017; 129: 3322-3331.
-
- Kochenderfer JN, Dudley ME, Feldman SA, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119: 2709-2720.
-
- Turtle CJ, Hanafi LA, Berger C, et al. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med 2016; 8: 355ra116.
-
- Sommermeyer D, Hudecek M, Kosasih PL, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 2016; 30: 492-500.
-
- Fraietta JA, Lacey SF, Orlando EJ, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 2018; 24: 563-571.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
