Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2019 Apr 22;18(1):143.
doi: 10.1186/s12936-019-2778-y.

Does anthropometric status at 6 months predict the over-dispersion of malaria infections in children aged 6-18 months? A prospective cohort study

Affiliations
Randomized Controlled Trial

Does anthropometric status at 6 months predict the over-dispersion of malaria infections in children aged 6-18 months? A prospective cohort study

Jaden Bendabenda et al. Malar J. .

Abstract

Background: In malaria-endemic settings, a small proportion of children suffer repeated malaria infections, contributing to most of the malaria cases, yet underlying factors are not fully understood. This study was aimed to determine whether undernutrition predicts this over-dispersion of malaria infections in children aged 6-18 months in settings of high malaria and undernutrition prevalence.

Methods: Prospective cohort study, conducted in Mangochi, Malawi. Six-months-old infants were enrolled and had length-for-age z-scores (LAZ), weight-for-age z-scores (WAZ), and weight-for-length z-scores (WLZ) assessed. Data were collected for 'presumed', clinical, and rapid diagnostic test (RDT)-confirmed malaria until 18 months. Malaria microscopy was done at 6 and 18 months. Negative binomial regression was used for malaria incidence and modified Poisson regression for malaria prevalence.

Results: Of the 2723 children enrolled, 2561 (94%) had anthropometry and malaria data. The mean (standard deviation [SD]) of LAZ, WAZ, and WLZ at 6 months were - 1.4 (1.1), - 0.7 (1.2), and 0.3 (1.1), respectively. The mean (SD) incidences of 'presumed', clinical, and RDT-confirmed malaria from 6 to 18 months were: 1.1 (1.6), 0.4 (0.8), and 1.3 (2.0) episodes/year, respectively. Prevalence of malaria parasitaemia was 4.8% at 6 months and 9.6% at 18 months. Higher WLZ at 6 months was associated with lower prevalence of malaria parasitaemia at 18 months (prevalence ratio [PR] = 0.80, 95% confidence interval [CI] 0.67 to 0.94, p = 0.007), but not with incidences of 'presumed' malaria (incidence rate ratio [IRR] = 0.97, 95% CI 0.92 to 1.02, p = 0.190), clinical malaria (IRR = 1.03, 95% CI 0.94 to 1.12, p = 0.571), RDT-confirmed malaria (IRR = 1.00, 95% CI 0.94 to 1.06, p = 0.950). LAZ and WAZ at 6 months were not associated with malaria outcomes. Household assets, maternal education, and food insecurity were significantly associated with malaria. There were significant variations in hospital-diagnosed malaria by study site.

Conclusion: In children aged 6-18 months living in malaria-endemic settings, LAZ, WAZ, and WLZ do not predict malaria incidence. However, WLZ may be associated with prevalence of malaria. Socio-economic and micro-geographic factors may explain the variations in malaria, but these require further study. Trial registration NCT00945698. Registered July 24, 2009, https://clinicaltrials.gov/ct2/show/NCT00945698 , NCT01239693. Registered Nov 11, 2010, https://clinicaltrials.gov/ct2/show/NCT01239693.

Keywords: Children; Infections; Malaria; Over-dispersion; Stunting; Undernutrition; Wasting; iLiNS studies.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart of the children enrolled and included in the final analysis. The figure shows the number of children enrolled, children lost to follow up, and children who were eventually included in the analysis from the iLiNS DOSE and iLiNS DYAD-M cohorts

References

    1. WHO . World malaria report 2017. Geneva: World Health Organization; 2017.
    1. National Malaria Control Programme (NMCP), ICF. Malawi Malaria Indicator Survey. Lilongwe, Malawi, and Rockville, Maryland, USA; 2017.
    1. WHO . Guidelines for the treatment of malaria. 3. Geneva: World Health Organization; 2015. Treatment of severe malaria; pp. 71–88.
    1. Mwangi TW, Fegan G, Williams TN, Kinyanjui SM, Snow RW, Marsh K. Evidence for over-dispersion in the distribution of clinical malaria episodes in children. PLoS ONE. 2008;3:e2196. doi: 10.1371/journal.pone.0002196. - DOI - PMC - PubMed
    1. Ndungu FM, Marsh K, Fegan G, Wambua J, Nyangweso G, Ogada E, et al. Identifying children with excess malaria episodes after adjusting for variation in exposure: identification from a longitudinal study using statistical count models. BMC Med. 2015;13:183. doi: 10.1186/s12916-015-0422-4. - DOI - PMC - PubMed

Publication types

Associated data