Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May-Jun;30(9):695-712.
doi: 10.1080/09205063.2019.1605866. Epub 2019 Apr 23.

Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review

Affiliations
Review

Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review

Mădălina Elena Grigore et al. J Biomater Sci Polym Ed. 2019 May-Jun.

Abstract

This study aims to provide an overview of the main polyhydroxyalkanoates (PHAs) used in medical applications. In this review, it has been demonstrated that the properties of PHAs can be controlled both by varying the concentration of units in the copolymer and the substrate for PHA production. Another way of controlling the mechanical properties of PHAs is varying the 3HV content, such as the case of P(3HB-co-3HV). A higher 3HV content in the structure of this polyester will lead to a lower cristallinity and, therefore, to greater flexibility, strength and elongation at break. PHAs are biocompatible, completely biodegradable, and non-toxic. Considering the state of the art technologies and their ideal properties, PHAs (especially the short-chain-length PHA polymers) can be tailored for specific medical applications, such as surgical suture, scaffolds, grafts and heart valves or drug delivery systems. Nowaday, random copolyesters of 3HB and 4HB (P(3HB-co-4HB)) are used for the development of biodegradable implants loaded with antibiotics for therapeutic treatment of chronic osteomyelitis. It is also believed that these biodegradable materials can be efficient alternatives for reducing the pollution produced by the medical waste consisting of replacing plastic handles, packs, syringes or tubes that are trashed into the homes, clinics and hospitals around the world.

Keywords: Polyhydroxyalkanoates; biopolyester; medical applications; nanotehnology.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources