Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2019 Apr 23;16(4):e1002786.
doi: 10.1371/journal.pmed.1002786. eCollection 2019 Apr.

Host-response-based gene signatures for tuberculosis diagnosis: A systematic comparison of 16 signatures

Affiliations
Comparative Study

Host-response-based gene signatures for tuberculosis diagnosis: A systematic comparison of 16 signatures

Hayley Warsinske et al. PLoS Med. .

Abstract

Background: The World Health Organization (WHO) and Foundation for Innovative New Diagnostics (FIND) have published target product profiles (TPPs) calling for non-sputum-based diagnostic tests for the diagnosis of active tuberculosis (ATB) disease and for predicting the progression from latent tuberculosis infection (LTBI) to ATB. A large number of host-derived blood-based gene-expression biomarkers for diagnosis of patients with ATB have been proposed to date, but none have been implemented in clinical settings. The focus of this study is to directly compare published gene signatures for diagnosis of patients with ATB across a large, diverse list of publicly available gene expression datasets, and evaluate their performance against the WHO/FIND TPPs.

Methods and findings: We searched PubMed, Gene Expression Omnibus (GEO), and ArrayExpress in June 2018. We included all studies irrespective of study design and enrollment criteria. We found 16 gene signatures for the diagnosis of ATB compared to other clinical conditions in PubMed. For each signature, we implemented a classification model as described in the corresponding original publication of the signature. We identified 24 datasets containing 3,083 transcriptome profiles from whole blood or peripheral blood mononuclear cell samples of healthy controls or patients with ATB, LTBI, or other diseases from 14 countries in GEO. Using these datasets, we calculated weighted mean area under the receiver operating characteristic curve (AUROC), specificity at 90% sensitivity, and negative predictive value (NPV) for each gene signature across all datasets. We also compared the diagnostic odds ratio (DOR), heterogeneity in DOR, and false positive rate (FPR) for each signature using bivariate meta-analysis. Across 9 datasets of patients with culture-confirmed diagnosis of ATB, 11 signatures had weighted mean AUROC > 0.8, and 2 signatures had weighted mean AUROC ≤ 0.6. All but 2 signatures had high NPV (>98% at 2% prevalence). Two gene signatures achieved the minimal WHO TPP for a non-sputum-based triage test. When including datasets with clinical diagnosis of ATB, there was minimal reduction in the weighted mean AUROC and specificity of all but 3 signatures compared to when using only culture-confirmed ATB data. Only 4 signatures had homogeneous DOR and lower FPR when datasets with clinical diagnosis of ATB were included; other signatures either had heterogeneous DOR or higher FPR or both. Finally, 7 of 16 gene signatures predicted progression from LTBI to ATB 6 months prior to sputum conversion with positive predictive value > 6% at 2% prevalence. Our analyses may have under- or overestimated the performance of certain ATB diagnostic signatures because our implementation may be different from the published models for those signatures. We re-implemented published models because the exact models were not publicly available.

Conclusions: We found that host-response-based diagnostics could accurately identify patients with ATB and predict individuals with high risk of progression from LTBI to ATB prior to sputum conversion. We found that a higher number of genes in a signature did not increase the accuracy of the signature. Overall, the Sweeney3 signature performed robustly across all comparisons. Our results provide strong evidence for the potential of host-response-based diagnostics in achieving the WHO goal of ending tuberculosis by 2035, and host-response-based diagnostics should be pursued for clinical implementation.

PubMed Disclaimer

Conflict of interest statement

I have read the journal's policy and the authors of this manuscript have the following competing interests: PK is a co-founder of and a scientific advisor to Inflammatix, Inc. Inflammatix played no role in this manuscript. PK is an inventor on the Sweeney3 signature pending patent owned by Stanford University, which has been licensed for commercialization.

Figures

Fig 1
Fig 1. Distribution of genes across the signatures included in this study.
Each row represents a gene signature for active tuberculosis diagnosis. Each column represents 1 gene. The number at the end of a signature name represents the number of genes in the given signature. Genes present in only 1 signature are red; those in 2 or more signatures are blue.

Similar articles

Cited by

References

    1. World Health Organization. High-priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting. Geneva: World Health Organization; 2014.
    1. World Health Organization, Foundation for Innovative New Diagnostics. Consensus meeting report: development of a target product profile (TPP) and a framework for evaluation for a test for predicting progression from tuberculosis infection to active disease. Geneva: World Health Organization; 2017.
    1. Kirwan DE, Gilman RH. Same-day diagnosis and treatment of tuberculosis. Lancet Infect Dis. 2013;13:102–4. 10.1016/S1473-3099(12)70270-0 - DOI - PubMed
    1. Davis JL, Cattamanchi A, Cuevas LE, Hopewell PC, Steingart KR. Diagnostic accuracy of same-day microscopy versus standard microscopy for pulmonary tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:147–54. 10.1016/S1473-3099(12)70232-3 - DOI - PMC - PubMed
    1. Cattamanchi A, Dowdy DW, Davis JL, Worodria W, Yoo S, Joloba M, et al. Sensitivity of direct versus concentrated sputum smear microscopy in HIV-infected patients suspected of having pulmonary tuberculosis. BMC Infect Dis. 2009;9:53 10.1186/1471-2334-9-53 - DOI - PMC - PubMed

Publication types

MeSH terms