GatewayNet: a form of sequential rule mining
- PMID: 31014328
- PMCID: PMC6480909
- DOI: 10.1186/s12911-019-0810-3
GatewayNet: a form of sequential rule mining
Abstract
Background: The gateway hypothesis (and particularly the prediction of developmental stages in drug abuse) has been a subject of protracted debate since the 1970s. Extensive research has gone into this subject, but has yielded contradictory findings. We propose an algorithm for detecting both association and causation relationships given a discrete sequence of events, which we believe will be useful in addressing the validity of the gateway hypothesis. To assess the gateway hypothesis, we developed the GatewayNet algorithm, a refinement of sequential rule mining called initiation rule mining. After a brief mathematical definition, we describe how to perform initiation rule mining and how to infer causal relationships from its rules ("gateway rules"). We tested GatewayNet against data for which relationships were known. After constructing a transaction database using a first-order Markov chain, we mined it to produce a gateway network. We then discuss various incarnations of the gateway network. We then evaluated the performance of GatewayNet on urine drug screening data collected from the emergency department at LSU Health Sciences Center in Shreveport. A de-identified database of urine drug screenings ordered by the department between August 1998 and June 2011 was collected and then restricted to patients having at least one screening succeeding their first positive drug screening result.
Results: In the synthetic data, a chain of gateway rules was found in the network which demonstrated causation. We did not find any evidence of gateway rules in the empirical data, but we were able to isolate two documented transitions into benzodiazepine use.
Conclusions: We conclude that GatewayNet may show promise not only for substance use data, but other data involving sequences of events. We also express future goals for GatewayNet, including optimizing it for speed.
Keywords: Association rule mining; Causal network; Gateway hypothesis; Initiation rules; Structure learning.
Conflict of interest statement
Ethics approval and consent to participate
Approval to use patient data has been provided by the LSU Health Institutional Review Board. All investigators have received mandatory certification from the Collaborative Institutional Training Initiative and understand the ethical responsibility in working with human subjects’ data. The protocol for human studies was approved by the Louisiana State University Health Science Center, Institutional Review Board, an IRB protocol number H12-151.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures











References
-
- O’Donnell JA, Clayton RR. The stepping-stone hypothesis – marijuana, heroin, and causality. Chem Depend. 1982;4(3):229–41. - PubMed
-
- Baumrind D. Familial antecedents of adolescent drug use: A developmental perspective. In: Jones CL, Battjes RJ, editors. Etiology of Drug Abuse: Implications for Prevention. Rockville: Department of Health and Human Services; 1985.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources