The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity
- PMID: 31019074
- PMCID: PMC6511015
- DOI: 10.1073/pnas.1814999116
The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity
Abstract
Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric Ec-dGTPase, including an X-ray free-electron laser structure of the free Ec-dGTPase enzyme to 3.2 Å. To obtain this structure, we developed a method that applied UV-fluorescence microscopy, video analysis, and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly located on fixed target holders, resulting in the highest indexing rates observed for a serial femtosecond crystallography experiment. Our structures show a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo- form. Moreover, despite no sequence homology, Ec-dGTPase and SAMHD1 share similar active-site and HD motif architectures; however, Ec-dGTPase residues at the end of the substrate-binding pocket mimic Watson-Crick interactions providing guanine base specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures shed light on the mechanism by which long distance binding (25 Å) of single-stranded DNA in an allosteric site primes the active site by conformationally "opening" a tyrosine gate allowing enhanced substrate binding.
Keywords: X-ray free-electron laser; dNTP triphosphohydrolase; metalloenzymes; serial femtosecond crystallography.
Copyright © 2019 the Author(s). Published by PNAS.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP.J Biol Chem. 2022 Jul;298(7):102073. doi: 10.1016/j.jbc.2022.102073. Epub 2022 May 26. J Biol Chem. 2022. PMID: 35643313 Free PMC article.
-
Structure of Escherichia coli dGTP triphosphohydrolase: a hexameric enzyme with DNA effector molecules.J Biol Chem. 2015 Apr 17;290(16):10418-29. doi: 10.1074/jbc.M115.636936. Epub 2015 Feb 18. J Biol Chem. 2015. PMID: 25694425 Free PMC article.
-
Mechanism of allosteric activation of SAMHD1 by dGTP.Nat Struct Mol Biol. 2013 Nov;20(11):1304-9. doi: 10.1038/nsmb.2692. Epub 2013 Oct 20. Nat Struct Mol Biol. 2013. PMID: 24141705 Free PMC article.
-
Involvement of SAMHD1 in dNTP homeostasis and the maintenance of genomic integrity and oncotherapy (Review).Int J Oncol. 2020 Apr;56(4):879-888. doi: 10.3892/ijo.2020.4988. Epub 2020 Feb 14. Int J Oncol. 2020. PMID: 32319570 Review.
-
Dual roles of SAMHD1 in tumor development and chemoresistance to anticancer drugs.Oncol Lett. 2021 Jun;21(6):451. doi: 10.3892/ol.2021.12712. Epub 2021 Apr 8. Oncol Lett. 2021. PMID: 33907561 Free PMC article. Review.
Cited by
-
Structural basis of transcription: RNA polymerase II substrate binding and metal coordination using a free-electron laser.Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2318527121. doi: 10.1073/pnas.2318527121. Epub 2024 Aug 27. Proc Natl Acad Sci U S A. 2024. PMID: 39190355 Free PMC article.
-
Bacteria deplete deoxynucleotides to defend against bacteriophage infection.Nat Microbiol. 2022 Aug;7(8):1200-1209. doi: 10.1038/s41564-022-01158-0. Epub 2022 Jul 11. Nat Microbiol. 2022. PMID: 35817891
-
Reaction Mechanism and Metal Selectivity of Human SAMHD1 Elucidated by QM/MM Calculations.ACS Catal. 2025 Jun 1;15(12):10176-10187. doi: 10.1021/acscatal.5c01682. eCollection 2025 Jun 20. ACS Catal. 2025. PMID: 40568220 Free PMC article.
-
Activating and inhibiting nucleotide signals coordinate bacterial anti-phage defense.bioRxiv [Preprint]. 2025 Jul 9:2025.07.09.663793. doi: 10.1101/2025.07.09.663793. bioRxiv. 2025. PMID: 40672243 Free PMC article. Preprint.
-
Mechanism by which T7 bacteriophage protein Gp1.2 inhibits Escherichia coli dGTPase.Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2123092119. doi: 10.1073/pnas.2123092119. Epub 2022 Sep 6. Proc Natl Acad Sci U S A. 2022. PMID: 36067314 Free PMC article.
References
-
- Meuth M. The genetic consequences of nucleotide precursor pool imbalance in mammalian cells. Mutat Res. 1984;126:107–112. - PubMed
-
- Seto D, Bhatnagar SK, Bessman MJ. The purification and properties of deoxyguanosine triphosphate triphosphohydrolase from Escherichia coli. J Biol Chem. 1988;263:1494–1499. - PubMed
-
- Nordlund P, Reichard P. Ribonucleotide reductases. Annu Rev Biochem. 2006;75:681–706. - PubMed
-
- Kunz BA, et al. International commission for protection against environmental mutagens and carcinogens. Deoxyribonucleoside triphosphate levels: A critical factor in the maintenance of genetic stability. Mutat Res. 1994;318:1–64. - PubMed
-
- Wheeler LJ, Rajagopal I, Mathews CK. Stimulation of mutagenesis by proportional deoxyribonucleoside triphosphate accumulation in Escherichia coli. DNA Repair (Amst) 2005;4:1450–1456. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous