Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May;569(7754):121-125.
doi: 10.1038/s41586-019-1154-y. Epub 2019 Apr 24.

Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell

Affiliations

Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell

Arshad Ayyaz et al. Nature. 2019 May.

Abstract

The turnover of the intestinal epithelium is driven by multipotent LGR5+ crypt-base columnar cells (CBCs) located at the bottom of crypt zones1. However, CBCs are lost following injury, such as irradiation2, but the intestinal epithelium is nevertheless able to recover3. Thus, a second population of quiescent '+4' cells, or reserve stem cells (RSCs), has previously been proposed to regenerate the damaged intestine4-7. Although CBCs and RSCs were thought to be mutually exclusive4,8, subsequent studies have found that LGR5+ CBCs express RSC markers9 and that RSCs were dispensable-whereas LGR5+ cells were essential-for repair of the damaged intestine3. In addition, progenitors of absorptive enterocytes10, secretory cells11-15 and slow cycling LGR5+ cells16 have been shown to contribute to regeneration whereas the transcriptional regulator YAP1, which is important for intestinal regeneration, was suggested to induce a pro-survival phenotype in LGR5+ cells17. Thus, whether cellular plasticity or distinct cell populations are critical for intestinal regeneration remains unknown. Here we applied single-cell RNA sequencing to profile the regenerating mouse intestine and identified a distinct, damage-induced quiescent cell type that we term the revival stem cell (revSC). revSCs are marked by high clusterin expression and are extremely rare under homoeostatic conditions, yet give rise-in a temporal hierarchy-to all the major cell types of the intestine, including LGR5+ CBCs. After intestinal damage by irradiation, targeted ablation of LGR5+ CBCs, or treatment with dextran sodium sulfate, revSCs undergo a YAP1-dependent transient expansion, reconstitute the LGR5+ CBC compartment and are required to regenerate a functional intestine. These studies thus define a unique stem cell that is mobilized by damage to revive the homoeostatic stem cell compartment and regenerate the intestinal epithelium.

PubMed Disclaimer

Comment in

References

    1. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007). - DOI
    1. Tao, S. et al. Wnt activity and basal niche position sensitize intestinal stem and progenitor cells to DNA damage. EMBO J. 36, 2920–2921 (2017). - DOI
    1. Metcalfe, C., Kljavin, N. M., Ybarra, R. & de Sauvage, F. J. Lgr5 + stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14, 149–159 (2014). - DOI
    1. Yan, K. S. et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc. Natl Acad. Sci. USA 109, 466–471 (2012). - DOI
    1. Powell, A. E. et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149, 146–158 (2012). - DOI

Publication types