Can Machine Learning Approaches Lead Toward Personalized Cognitive Training?
- PMID: 31019455
- PMCID: PMC6458282
- DOI: 10.3389/fnbeh.2019.00064
Can Machine Learning Approaches Lead Toward Personalized Cognitive Training?
Keywords: cognitive remediation; cognitive training; machine learning; treatment adaptation; treatment selection.
Figures
Similar articles
-
Personalized treatment selection in routine care: Integrating machine learning and statistical algorithms to recommend cognitive behavioral or psychodynamic therapy.Psychother Res. 2021 Jan;31(1):33-51. doi: 10.1080/10503307.2020.1769219. Epub 2020 May 28. Psychother Res. 2021. PMID: 32463342
-
Personalized prognostic prediction of treatment outcome for depressed patients in a naturalistic psychiatric hospital setting: A comparison of machine learning approaches.J Consult Clin Psychol. 2020 Jan;88(1):25-38. doi: 10.1037/ccp0000451. J Consult Clin Psychol. 2020. PMID: 31841022 Free PMC article.
-
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.Artif Intell Med. 2019 Jul;98:109-134. doi: 10.1016/j.artmed.2019.07.007. Epub 2019 Jul 26. Artif Intell Med. 2019. PMID: 31383477 Review.
-
A Machine-Learning Based Approach for Predicting Older Adults' Adherence to Technology-Based Cognitive Training.Inf Process Manag. 2022 Sep;59(5):103034. doi: 10.1016/j.ipm.2022.103034. Epub 2022 Jul 21. Inf Process Manag. 2022. PMID: 35909793 Free PMC article.
-
[Learning potential and cognitive remediation in schizophrenia].Encephale. 2009 Sep;35(4):353-60. doi: 10.1016/j.encep.2008.06.014. Epub 2009 Jan 8. Encephale. 2009. PMID: 19748372 Review. French.
Cited by
-
Using machine learning-based analysis for behavioral differentiation between anxiety and depression.Sci Rep. 2020 Oct 2;10(1):16381. doi: 10.1038/s41598-020-72289-9. Sci Rep. 2020. PMID: 33009424 Free PMC article.
-
Machine learning meta-analysis identifies individual characteristics moderating cognitive intervention efficacy for anxiety and depression symptoms.NPJ Digit Med. 2025 Jan 28;8(1):65. doi: 10.1038/s41746-025-01449-w. NPJ Digit Med. 2025. PMID: 39870867 Free PMC article.
-
Using clustering algorithms to examine the association between working memory training trajectories and therapeutic outcomes among psychiatric and healthy populations.Psychol Res. 2023 Jul;87(5):1389-1400. doi: 10.1007/s00426-022-01728-1. Epub 2022 Sep 17. Psychol Res. 2023. PMID: 36114852 Free PMC article.
-
Machine Learning-Based Behavioral Diagnostic Tools for Depression: Advances, Challenges, and Future Directions.J Pers Med. 2021 Sep 26;11(10):957. doi: 10.3390/jpm11100957. J Pers Med. 2021. PMID: 34683098 Free PMC article. Review.
-
Spider vs. guns: expectancy and attention biases to phylogenetic threat do not extend to ontogenetic threat.Front Psychol. 2023 Aug 30;14:1232985. doi: 10.3389/fpsyg.2023.1232985. eCollection 2023. Front Psychol. 2023. PMID: 37711323 Free PMC article.
References
-
- Brabec B., Meister R. (2001). A nearest-neighbor model for regional avalanche forecasting. Ann. Glaciol. 32, 130–134. 10.3189/172756401781819247 - DOI
-
- Cipriani A., Furukawa T. A., Salanti G., Chaimani A., Atkinson L. Z., Ogawa Y., et al. . (2018). Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 391, 1357–1366. 10.1016/S0140-6736(17)32802-7 - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources