Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2019 Apr 26;20(1):82.
doi: 10.1186/s13059-019-1679-2.

African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations

Affiliations
Comparative Study

African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations

Shaohua Fan et al. Genome Biol. .

Erratum in

Abstract

Background: Africa is the origin of modern humans within the past 300 thousand years. To infer the complex demographic history of African populations and adaptation to diverse environments, we sequenced the genomes of 92 individuals from 44 indigenous African populations.

Results: Genetic structure analyses indicate that among Africans, genetic ancestry is largely partitioned by geography and language, though we observe mixed ancestry in many individuals, consistent with both short- and long-range migration events followed by admixture. Phylogenetic analysis indicates that the San genetic lineage is basal to all modern human lineages. The San and Niger-Congo, Afroasiatic, and Nilo-Saharan lineages were substantially diverged by 160 kya (thousand years ago). In contrast, the San and Central African rainforest hunter-gatherer (CRHG), Hadza hunter-gatherer, and Sandawe hunter-gatherer lineages were diverged by ~ 120-100 kya. Niger-Congo, Nilo-Saharan, and Afroasiatic lineages diverged more recently by ~ 54-16 kya. Eastern and western CRHG lineages diverged by ~ 50-31 kya, and the western CRHG lineages diverged by ~ 18-12 kya. The San and CRHG populations maintained the largest effective population size compared to other populations prior to 60 kya. Further, we observed signatures of positive selection at genes involved in muscle development, bone synthesis, reproduction, immune function, energy metabolism, and cell signaling, which may contribute to local adaptation of African populations.

Conclusions: We observe high levels of genomic variation between ethnically diverse Africans which is largely correlated with geography and language. Our study indicates ancient population substructure and local adaptation of Africans.

Keywords: African populations; Demographic history; Effective population size; Genomic variation; Human evolution; Local adaptation; Whole genome sequencing.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Written informed consent was obtained from all participants, and research/ethics approval and permits were obtained from all relevant institutions in the Simons Genome Diversity Project. The IRB approval number for Harvard Medical School (#11681), most recently re-reviewed on July 122,017 (MOD-11681-01). The experimental methods in this study comply with the principles of the Helsinki Declaration.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Locations of samples included in this study. Each dot is an individual and the color indicates the language classification
Fig. 2
Fig. 2
Phylogenetic relationship of 44 African and 32 west Eurasian populations determined by a neighbor joining analysis assuming no admixture. Here, the dots of each node represent bootstrap values and the color of each branch indicates language usage of each population. Human_AA human ancestral alleles
Fig. 3
Fig. 3
Principal component analysis of 44 African and 32 west Eurasian populations using principal component analysis. Each dot represents an individual and color of dots represents language usage. PC1 separates the African and western Eurasian populations, with Middle-Eastern populations in between. PC2 distinguishes the San populations (both Khomani San and Juǀ’hoan) from other Africans. CRHG individuals (including both eastern and western CRHG) separate with other Africans at PC3
Fig. 4
Fig. 4
ADMIXTURE analysis of 92 African and 62 West Eurasian individuals. Each bar is an individual and colors represent the proportion of inferred ancestry from K ancestral populations. The bottom bar shows the language classification of each individual. K = 2 separates the African and West Eurasian populations. African hunter-gatherer populations Khomani San, Ju|’hoan, Sandawe, Hadza, and CRHG populations are distinguished from the rest of the populations at K = 3 (yellow bar). From K = 5, CRHG populations emerge as a single cluster. With the increasing of K, the populations are largely grouped by their current language usage
Fig. 5
Fig. 5
Effective population size inferred using MSMC. Each line represents the average effective population size per population, and the colors represent language usage, except for the CRHG populations. Here, we assume a mutation rate per generate (v) 1.25 × 10−8 and average generation time (g) 29 years. ad The effective population size of Khoesan-, Niger-Congo-, Nilo-Saharan-, and Afroasiatic-speaking populations
Fig. 6
Fig. 6
Relative cross-coalescence rate (RCCR) in African populations. Between the San and non-Khoesan-speaking populations (a); between the San and other African hunter-gatherer populations (b); between the CRHG populations and between the Hadza and Sandawe populations (c); between the Nilo-Saharan-, Niger-Congo-, and Afroasiatic-speaking populations (d)

Comment in

  • The long walk to African genomics.
    Tucci S, Akey JM. Tucci S, et al. Genome Biol. 2019 Jun 27;20(1):130. doi: 10.1186/s13059-019-1740-1. Genome Biol. 2019. PMID: 31248437 Free PMC article. No abstract available.

References

    1. Hublin J-J, Ben-Ncer A, Bailey SE, Freidline SE, Neubauer S, Skinner MM, Bergmann I, Le Cabec A, Benazzi S, Harvati K, Gunz P. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature. 2017;546:289–292. doi: 10.1038/nature22336. - DOI - PubMed
    1. Campbell MC, Hirbo JB, Townsend JP, Tishkoff SA. The peopling of the African continent and the diaspora into the new world. Curr Opin Genet Dev. 2014;29:120–132. doi: 10.1016/j.gde.2014.09.003. - DOI - PMC - PubMed
    1. Atkinson QD. Phonemic diversity supports a serial founder effect model of language expansion from Africa. Science. 2011;332:346–349. doi: 10.1126/science.1199295. - DOI - PubMed
    1. Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, Hirbo JB, Awomoyi AA, Bodo J-M, Doumbo O, et al. The genetic structure and history of Africans and African Americans. Science. 2009;324:1035–1044. doi: 10.1126/science.1172257. - DOI - PMC - PubMed
    1. Heine B, Nurse D. African languages: an introduction: Cambridge University Press; 2000.

Publication types

LinkOut - more resources