Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019:1979:425-432.
doi: 10.1007/978-1-4939-9240-9_25.

Differential Expression Analysis in Single-Cell Transcriptomics

Affiliations

Differential Expression Analysis in Single-Cell Transcriptomics

Luca Alessandrì et al. Methods Mol Biol. 2019.

Abstract

Differential expression analysis is an important aspect of bulk RNA sequencing (RNAseq). A lot of tools are available, and among them DESeq2 and edgeR are widely used. Since single-cell RNA sequencing (scRNAseq) expression data are zero inflated, single-cell data are quite different from those generated by conventional bulk RNA sequencing. Comparative analysis of tools used to detect differentially expressed genes between two groups of single cells showed that edgeR with quasi-likelihood F-test (QLF) outperforms other methods.In bulk RNAseq, differential expression is mainly used to compare limited number of replicates of two or more biological conditions. However, scRNAseq differential expression analysis might be also instrumental to identify the main players of cells subpopulation organization, thus requiring the use of multiple comparisons tools. Nowadays, edgeR is one of the few tools that are able to handle both zero inflated matrices and multiple comparisons. Here, we provide a guide to the use of edgeR as a tool to detect differential expression in single-cell data.

Keywords: Differential expression; Single-cell RNA sequencing; edgeR; scRNAseq.

PubMed Disclaimer

LinkOut - more resources