Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 27;25(1):15.
doi: 10.1186/s10020-019-0082-5.

Tag-based next generation sequencing: a feasible and reliable assay for EGFR T790M mutation detection in circulating tumor DNA of non small cell lung cancer patients

Affiliations

Tag-based next generation sequencing: a feasible and reliable assay for EGFR T790M mutation detection in circulating tumor DNA of non small cell lung cancer patients

Mariella Dono et al. Mol Med. .

Abstract

Background: The demonstration of EGFR T790M gene mutation in plasma is crucial to assess the eligibility of Non Small Cell Lung Cancer (NSCLC) patients, who have acquired resistance to first or second generation Tyrosine Kinase Inhibitors (TKIs), to receive a subsequent treatment with osimertinib. Since circulating tumor DNA (ctDNA) is present in very low amounts in plasma, high sensitive and specific methods are required for molecular analysis. Improving sensitivity of T790M mutation detection in plasma ctDNA enables a larger number of NSCLC patients to receive the appropriate therapy without any further invasive procedure.

Methods: A tag-based next generation sequencing (NGS) platform capable of tagging rare circulating tumor DNA alleles was employed in this study for the identification of T790M mutation in 42 post-TKI NSCLC patients.

Results: Compared to Real Time PCR, tag-based NGS improved the T790M detection rate (42.85% versus 21.4%, respectively), especially in those cases with a low median mutation abundance (i.e. 0.24, range 0.07-0.78). Moreover, the tag-based NGS identified EGFR activating mutations more efficiently than Real Time PCR (85.7% versus 61.9% detection rate, respectively), particularly of the L858R variant type (0.06-0.75 mutation abundance range). Patients in whom the T790M mutation was detected in plasma, achieved an objective response to osimertinib (9/14, 64.28%).

Conclusions: Tag-based NGS represents an accurate and sensitive tool in a clinical setting for non-invasive assessment and monitoring of T790M variant in NSCLC patients.

Keywords: C797S; Circulating tumor DNA; EGFR TKIs; Liquid biopsy; Molecular tag; NSCLC; Next generation sequencing; T790M resistance mutation.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

All of the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. Written informed consent was obtained from each patient included in the study. The study protocol has been approved by the Ethics Committee of Liguria Region (Italy) (P.R.273REG2016).

Consent for publication

Not applicable.

Competing interests

Drs. M. Dono and S. Zupo received speaker honoraria from AstraZeneca; Dr. C. Genova discloses being advisory Board member of AstraZeneca and received honoraria from AstraZeneca, Boehringer-Ingelheim, Bristol-Myers-Squibb, Merck Sharp & Dohme and Roche; Dr. F. Grossi received honoraria from AMGEN, AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim, Celgene, Merck Sharp & Dohme, Pfizer, Pierre Fabre, Roche.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
EGFR mutations in 42 post-TKI NSCLC patients. (a) Distribution of the various EGFR mutations types in the 42 patients according to Real Time PCR (PCR) and tag-based NGS (NGS). The y-axis shows patients count according to different mutation patterns detected by the two platforms. (b) Coincident Rate between Real Time PCR (grey bars) and tag-based NGS (black bars) according to the different EGFR mutations types found. The y-axis indicated the number of cases concordant for the specific variation with both Real Time PCR and tag-based NGS and corresponding percentages are indicated within the histogram. PCR, Real Time PCR; NGS, tag-based NGS; del, deletions; Sens, sensitizing; pos, positive; neg, negative
Fig. 2
Fig. 2
Variant allele frequency (%) in plasma. Sensitizing EGFR mutations (n = 36 cases) and T790M mutations (n = 18 cases) were determined in plasma by tag-based NGS and are reported as variant allele frequency percentage (%) (a) Variant allele frequency (%) for EGFR mutations determined by tag-based NGS in two patients groups classified as positive or negative for the sensitizing mutation of EGFR based on both (black circles) or one (black squares) the methods employed in the study (b) Results of tests similar to those in b except that the L858R and T790M mutations were measured in (c) and (d), respectively. Each dot represents one patient. Solid lines represent median values. Statistical P values were derived from a Mann-Whitney test. PCR, Real Time PCR; NGS, tag-based NGS; sens mut, sensitizing mutations; pos, positive; neg, negative
Fig. 3
Fig. 3
T790M detection comparison between tag-based NGS and ddPCR. Variant Allele Frequencies detected by tag-based NGS (black line) and ddPCR (dashed line) for 23 plasma samples are shown. NGS, tag-based NGS; ddPCR, droplet digital polymerase chain reaction; VAF, Variant Allele Frequency
Fig. 4
Fig. 4
Workflow for the identification of EGFR T790M in TKI progressed patients with advanced NSCLC. Procedures and timing of cfDNA EGFR testing from sample arrival is represented together with the decision algorithm suggested. *Patients resulting T790M negative after NGS analysis on cfDNA can undergone tumor biopsy, when feasible. Alternatively, the T790M negative patient can be retested on a second cfDNA after 2–4 weeks following the National Scientific Society recommendations on liquid biopsy (https://www.aiom.it/wp-content/uploads/2018/09/2018_biopsialiquida.pdf)

Similar articles

Cited by

References

    1. Ariyasu R, Nishikawa S, Uchibori K, et al. High ratio of T790M to EGFR activating mutations correlate with the osimertinib response in non-small-cell lung cancer. Lung Cancer. 2018;117:1–6. - PubMed
    1. Arulananda S, Do H, Musafer A, Mitchell P, Dobrovic A, John T. Combination Osimertinib and Gefitinib in C797S and T790M EGFR-mutated non-small cell lung Cancer. J Thorac Oncol. 2017;12(11):1728–1732. - PubMed
    1. Bartels S, Persing S, Hasemeier B, Schipper E, Kreipe H, Lehmann H. Molecular analysis of circulating cell-free DNA from lung Cancer patients in routine laboratory practice. A Cross-Platform Comparison of Three Different Molecular Methods for Mutation Detection. J Mol Diagn. 2017;19:722. - PubMed
    1. Coco S, Truini A, Vanni I, et al. Next generation sequencing in non-small cell lung cancer: new avenues toward the personalized medicine. Curr Drug Targets. 2015;16(1):47–59. - PubMed
    1. Cross DA, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4:1046–1061. - PMC - PubMed

Publication types