Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 13;36(3):605-613.
doi: 10.1021/acs.organomet.6b00803. Epub 2017 Jan 17.

A Straightforward Access to Stable, 16 Valence-electron Phosphine-Stabilized Fe0 Olefin Complexes and their Reactivity

Affiliations

A Straightforward Access to Stable, 16 Valence-electron Phosphine-Stabilized Fe0 Olefin Complexes and their Reactivity

Benjamin Burcher et al. Organometallics. .

Abstract

The use of the dialkene divinyltetramethyldisiloxane (dvtms) allows easy access to the reactive 16 valence-electron complexes [Fe0(L-L)(dvtms)], (L-L) = dppe (1,2-bis(diphenylphosphino)ethane), (1), dppp (1,2-bis(diisopropylphosphino)propane), (2), pyNMeP(iPr)2 (N-(diisopropylphosphino)-N-methylpyridin-2-amine), (4), dipe (1,2-bis(diisopropylphosphino)ethane), (5), and [Fe0(L)2(dvtms)], L = PMe3, (3), by a mild reductive route using AlEt2(OEt) as reducing agent. In contrast, by the same methodology, the 18 valence-electron complexes [Fe0(L-L)2(ethylene)], (L-L) = dppm (1,2-bis(diphenylphosphino)methane), 6, (L-L) = dppa (1,2-bis(diphenylphosphino)amine) 7 or (L-L)=dppe, 8, were obtained, which do not contain dvtms. In addition, a combined DFT and solid-state paramagnetic NMR methodology is introduced for the structure determination of 5. A comparative study of the reactivity of 1,2,4-6 and 8 with 3-hexyne highlights emerging mechanistic implications for C-C coupling reactions using these complexes as catalysts.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1
Synthesis of complexes 1-5.
Figure 1
Figure 1
Thermal ellipsoid representation (at 50% probability) of complexes (from top to bottom) 1, 2, 3 and 4; H atoms are not shown for clarity. Selected bond lengths (Å) and angles (°): For 1: P1-Fe1-P2 84.75(3); P1-Fe1 2.302(10); P2-Fe1 2.316(10); C3-C4 1.419(5); C1-C2 1.409(5); for 2: P1-Fe1-P2 91.37(2); P1-Fe1 2.291(6); P2-Fe1 2.335(6); C3-C4 1.418(3); C1-C2 1.415(3); for 3: P1-Fe1-P1 99.76(2); P1-Fe1 2.299(4); C1-C2 1.423(2); for 4: P1-Fe1-N2 80.77(6); P1-Fe1 2.245(8); Fe1-N2 2.147(2); C1-C2 1.417(3); C3-C4 1.422(3).
Figure 2
Figure 2
(a) X-ray structure of 1 (H atoms not shown for clarity). (b) DFT-optimized structure of 5. (c) Visualization of positive (blue) and negative (red) isosurfaces of spin density distribution in 5 (for ±0.0002 a.u. isovalues). (d) 13C PNMR spectrum of 5. The two CH2 carbons and their signals are labeled with a circle and a square in panels (c-d).
Scheme 2
Scheme 2
Synthetic route to complexes 6-8.
Figure 3
Figure 3
Thermal ellipsoid representation (at 50% probability) of complex 7. H atoms are not shown for clarity. Selected bond length (Å) and angles (°): P2-Fe1-P4 71.70(2); P29-Fe1-P31 71.78(2); C57-C56 1.423(3); C56-Fe1 2.069(2); C57-Fe1 2.050(2); P4-Fe1 2.189(6); P2-Fe1 2.209(6); P31-Fe1 2.198(6); P29-Fe1 2.175(6).
Figure 4
Figure 4
Thermal ellipsoid representation (at 50% probability) of complex 8 (50% probability displacement ellipsoids). H atoms are not shown for clarity. Selected bond length (Å) and angles (°): P2-Fe1-P5 84.35(8); P33-Fe-P30 83.72(8); C59-C58 1.441(11); C59-Fe1 2.082(8); C58-Fe1 2.099(7); P5-Fe12.229(2); P2-Fe1 2.238(2); P33-Fe1 2.214(2); P30-Fe1 2.210(2).
Scheme 3
Scheme 3
Suggested mechanism for alkyne cyclo-trimerization.
Figure 5
Figure 5
Thermal ellipsoid representation (at 50% probability) of complex 9. H atoms are not shown for clarity. Selected bond length (Å) and angles (°): P11-Fe1-P2 86.76(5); P11-Fe1 2.1501(14); P2-Fe1 2.136(14); P30-Fe1 2.150(14); Fe1-C34 1.874(5); Fe1-C35 1.860(5); C34-C35 1.303(6).

Similar articles

Cited by

References

    1. Bauer I, Knölker H-J. Chem Rev. 2015;115:3170–3387. - PubMed
    2. Burcher B, Breuil P-AR, Magna L, Olivier-Bourbigou H. In: Iron Catalysis II. Bauer E, editor. Vol. 50. Springer International Publishing; Switzerland: 2015. pp. 217–258.
    1. Lavallo V, El-Batta A, Bertrand G, Grubbs RH. Angew Chem Int Ed. 2011;50:268–271. - PMC - PubMed
    2. Ung G, Rittle J, Soleilhavoup M, Bertrand G, Peters JC. Angew Chem Int Ed. 2014;53:8427–8431. - PubMed
    3. Danopoulos AA, Wright JA, Motherwell WB. Chem Comm. 2005:784–786. - PubMed
    4. Brennessel WW, Jilek RE, Ellis JE. Angew Chem Int Ed. 2007;46:6132–6136. - PubMed
    5. Werncke CG, Bunting PC, Duhayon C, Long JR, Bontemps S, Sabo-Etienne S. Angew Chem Int Ed. 2015;54:245–248. - PubMed
    6. Zadrozny JM, Xiao DJ, Atanasov M, Long GJ, Granjean F, Neese F, Long JR. Nature Chem. 2013;5:577–581. - PubMed
    1. Hoyt JM, Schmidt VA, Tondreau AM, Chirik PJ. Science. 2015;349:960–963. - PubMed
    2. Anderson JS, Rittle J, Peters JC. Nature. 2013;501:84–88. - PMC - PubMed
    3. Creutz SE, Peters JC. J Am Chem Soc. 2014;136:1105–1115. - PMC - PubMed
    4. Ung G, Peters JC. Angew Chem Int Ed. 2015;54:532–535. - PMC - PubMed
    5. Boddien A, Loges B, Gärtner F, Toborg C, Fumino K, Junge H, Ludwig R, Beller M. J Am Chem Soc. 2010;132:8924–8934. - PubMed
    6. Fürstner A, Majima K, Martín R, Krause H, Kattnig E, Goddard R, Lehmann CW. J Am Chem Soc. 2008;130:1992–2004. - PubMed
    7. Fürstner A, Martín R, Krause H, Seidel G, Goddard R, Lehmann CW. J Am Chem Soc. 2008;130:8773–8787. - PubMed
    8. Bart SC, Lobkovsky E, Chirik PJ. J Am Chem Soc. 2004;126:13794–13807. - PubMed
    9. Wang C, Li X, Wu F, Wan B. Angew Chem Int Ed. 2011;50:7162–7166. - PubMed
    1. McNeill E, Ritter T. Acc Chem Res. 2015;48:2330–2343. - PubMed
    1. Selected examples of low-oxidation state iron complexes stabilized by nitrogen-based ligands: Stoian SA, Yu Y, Smith JM, Holland PL, Bominaar EL, Münck E. Inorg Chem. 2005;44:4915–4922. Yu Y, Smith JM, Flaschenriem CJ, Holland PL. Inorg Chem. 2006;45:5742–5751. Smith JM, Sadique AR, Cundari TR, Rogers KR, Lukat-Rodgers G, Lachicotte RJ, Flaschenriem CJ, Vela J, Holland PL. J Am Chem Soc. 2006;128:756–769. Chiang KP, Scarborough CC, Horitani M, Lees NS, Ding K, Dugan TR, Brenessel WW, Bill E, Hoffman BM, Holland PL. Angew Chem Int Ed. 2012;51:3658–3662. Rodriguez MM, Stubbert BD, Scarborough CC, Brennessel WW, Bill E, Holland PL. Angew Chem Int Ed. 2012;51:8247–8250. Coric I, Mercado BQ, Bill E, Vinyard DJ, Holland PL. Nature. 2015;526:96–99. Russell SK, Lobkovsky E, Chirik PJJ. Am Chem Soc. 2011;133:8858–8851. Hoyt JM, Sylvester KT, Semproni SP, Chirik PJ. J Am Chem Soc. 2013;135:4862–4877.

LinkOut - more resources