A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors
- PMID: 31032402
- PMCID: PMC6486231
- DOI: 10.1126/sciadv.aau8170
A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors
Abstract
Neuromorphic computing is an approach to efficiently solve complicated learning and cognition problems like the human brain using electronics. To efficiently implement the functionality of biological neurons, nanodevices and their implementations in circuits are exploited. Here, we describe a general-purpose spiking neuromorphic system that can solve on-the-fly learning problems, based on magnetic domain wall analog memristors (MAMs) that exhibit many different states with persistence over the lifetime of the device. The research includes micromagnetic and SPICE modeling of the MAM, CMOS neuromorphic analog circuit design of synapses incorporating the MAM, and the design of hybrid CMOS/MAM spiking neuronal networks in which the MAM provides variable synapse strength with persistence. Using this neuronal neuromorphic system, simulations show that the MAM-boosted neuromorphic system can achieve persistence, can demonstrate deterministic fast on-the-fly learning with the potential for reduced circuitry complexity, and can provide increased capabilities over an all-CMOS implementation.
Figures






Similar articles
-
Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.Neural Netw. 2015 Dec;72:152-67. doi: 10.1016/j.neunet.2015.07.004. Epub 2015 Aug 18. Neural Netw. 2015. PMID: 26422422
-
A Hybrid CMOS-Memristor Neuromorphic Synapse.IEEE Trans Biomed Circuits Syst. 2017 Apr;11(2):434-445. doi: 10.1109/TBCAS.2016.2618351. Epub 2016 Dec 22. IEEE Trans Biomed Circuits Syst. 2017. PMID: 28026782
-
Surrogate gradients for analog neuromorphic computing.Proc Natl Acad Sci U S A. 2022 Jan 25;119(4):e2109194119. doi: 10.1073/pnas.2109194119. Proc Natl Acad Sci U S A. 2022. PMID: 35042792 Free PMC article.
-
Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations.Materials (Basel). 2019 Aug 27;12(17):2745. doi: 10.3390/ma12172745. Materials (Basel). 2019. PMID: 31461877 Free PMC article. Review.
-
Artificial Neuron and Synapse Devices Based on 2D Materials.Small. 2021 May;17(20):e2100640. doi: 10.1002/smll.202100640. Epub 2021 Apr 4. Small. 2021. PMID: 33817985 Review.
Cited by
-
Magnon scattering modulated by omnidirectional hopfion motion in antiferromagnets for meta-learning.Sci Adv. 2023 Feb 10;9(6):eade7439. doi: 10.1126/sciadv.ade7439. Epub 2023 Feb 8. Sci Adv. 2023. PMID: 36753538 Free PMC article.
-
Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware.Nat Commun. 2024 May 28;15(1):4534. doi: 10.1038/s41467-024-48631-4. Nat Commun. 2024. PMID: 38806482 Free PMC article.
-
Low-power artificial neuron networks with enhanced synaptic functionality using dual transistor and dual memristor.PLoS One. 2025 Jan 27;20(1):e0318009. doi: 10.1371/journal.pone.0318009. eCollection 2025. PLoS One. 2025. PMID: 39869556 Free PMC article.
-
Magnetoionics for Synaptic Devices and Neuromorphic Computing: Recent Advances, Challenges, and Future Perspectives.Small Sci. 2024 Jul 4;4(10):2400133. doi: 10.1002/smsc.202400133. eCollection 2024 Oct. Small Sci. 2024. PMID: 40212233 Free PMC article.
-
Prospect of Spin-Orbitronic Devices and Their Applications.iScience. 2020 Sep 28;23(10):101614. doi: 10.1016/j.isci.2020.101614. eCollection 2020 Oct 23. iScience. 2020. PMID: 33089103 Free PMC article. Review.
References
-
- Davies M., Srinivasa N., Lin T.-H., Chinya G., Cao Y., Choday S. H., Dimou G., Joshi P., Imam N., Jain S., Liao Y., Lin C.-K., Lines A., Liu R., Mathaikutty D., McCoy S., Paul A., Tse J., Venkataramanan G., Weng Y.-H., Wild A., Yang Y., Wang H., Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro. 38, 82–99 (2018).
-
- Merolla P. A., Arthur J. V., Alvarez-Icaza R., Cassidy A. S., Sawada J., Akopyan F., Jackson B. L., Imam N., Guo C., Nakamura Y., Brezzo B., Vo I., Esser S. K., Appuswamy R., Taba B., Amir A., Flickner M. D., Risk W. P., Manohar R., Modha D. S., A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014). - PubMed
-
- George S., Kim S., Shah S., Hasler J., Collins M., Adil F., Wunderlich R., Nease S., Ramakrishnan S., A programmable and configurable mixed-mode FPAA SoC. IEEE Trans. VLSI Syst. 24, 2253–2261 (2016).
-
- Indiveri G., Linares-Barranco B., Hamilton T. J., van Schaik A., Etienne-Cummings R., Delbruck T., Liu S.-C., Dudek P., Häfliger P., Renaud S., Schemmel J., Cauwenberghs G., Arthur J., Hynna K., Folowosele F., Saighi S., Serrano-Gotarredona T., Wijekoon J., Wang Y., Boahen K., Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011). - PMC - PubMed
-
- A. C. Parker, J. Joshi, C.-C. Hsu, N. A. D. Singh, A carbon nanotube implementation of temporal and spatial dendritic computations, in 2008 51st Midwest Symposium on Circuits and Systems (IEEE, 2008), pp. 818–821.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources