Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul;19(7):397-405.
doi: 10.1016/j.clml.2019.03.017. Epub 2019 Mar 25.

Future of Personalized Therapy Targeting Aberrant Signaling Pathways in Multiple Myeloma

Affiliations
Review

Future of Personalized Therapy Targeting Aberrant Signaling Pathways in Multiple Myeloma

Faiz Anwer et al. Clin Lymphoma Myeloma Leuk. 2019 Jul.

Abstract

Multiple myeloma (MM) is a genetically complex disease. Identification of mutations and aberrant signaling pathways that contribute to the progression of MM and drug resistance has potential to lead to specific targets and personalized treatment. Aberrant signal pathways include RAS pathway activation due to RAS or BRAF mutations (targeted by vemurafenib alone or combined with cobimetinib), BCL-2 overexpression in t(11:14) (targeted by venetoclax), JAK2 pathway activation (targeted by ruxolitinib), NF-κB pathway activation (treated with DANFIN combined with bortezomib), MDM2 overexpression, and PI3K/mTOR pathway activation (targeted by BEZ235). Cyclin D1 (CCND1) and MYC are also emerging as key potential targets. In addition, histone deacetylase inhibitors are already in use for the treatment of MM in combination therapy, and targeted inhibition of FGFR3 (AZD4547) is effective in myeloma cells with t(4;14) translocation. Bromodomain and extra terminal (BET) protein antagonists decrease the expression of MYC and have displayed promising antimyeloma activity. A better understanding of the alterations in signaling pathways that promote MM progression will further inform the development of precision therapy for patients.

Keywords: Intracellular pathway; MM; Mutations; Precision medicine; Targeted therapy.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest statement: Dr. Anwer is on the speaker bureau of Incyte and received honoraria from Seattle genetics for advisory board participation. Other authors declare that there is no conflict of interest with this manuscript. The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties. No writing assistance was utilized in the production of this manuscript.

References

    1. Van Wier S, Braggio E, Baker A, et al. Hypodiploid multiple myeloma is characterized by more aggressive molecular markers than non-hyperdiploid multiple myeloma. Haematologica. 2013;98(10):1586–1592. - PMC - PubMed
    1. Debes-Marun CS, Dewald GW, Bryant S, et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia. 2003;17(2):427–436. - PubMed
    1. Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001;98(7):2229–2238. - PubMed
    1. Rajkumar SV. Multiple Myeloma: 2016 update on Diagnosis, Risk-stratification and Management. American journal of hematology. 2016;91(7):719–734. - PMC - PubMed
    1. Mikhael JR, Dingli D, Roy V, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines 2013. Paper presented at: Mayo Clinic Proceedings2013. - PubMed