Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov;30(12):1616-1621.
doi: 10.1071/RD18086.

Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9

Affiliations

Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9

Shiwei Zhou et al. Reprod Fertil Dev. 2018 Nov.

Abstract

Since its emergence, the clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) 9 system has been increasingly used to generate animals for economically important traits. However, most CRISPR/Cas9 applications have been focused on non-homologous end joining, which results in base deletions and insertions, leading to a functional knockout of the targeted gene. The Booroola fecundity gene (FecBB) mutation (p.Q249R) in bone morphogenetic protein receptor type 1B (BMPR1B) has been demonstrated to exert a profound effect on fecundity in many breeds of sheep. In the present study, we successfully obtained lambs with defined point mutations resulting in a p.249Q>R substitution through the coinjection of Cas9 mRNA, a single guide RNA and single-stranded DNA oligonucleotides into Tan sheep zygotes. In the newborn lambs, the observed efficiency of the single nucleotide exchange was as high as 23.8%. We believe that our findings will contribute to improved reproduction traits in sheep, as well as to the generation of defined point mutations in other large animals.

PubMed Disclaimer

Substances

LinkOut - more resources