Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Apr 16:6:74.
doi: 10.3389/fmed.2019.00074. eCollection 2019.

Treatment of Infections Due to MDR Gram-Negative Bacteria

Affiliations
Review

Treatment of Infections Due to MDR Gram-Negative Bacteria

Matteo Bassetti et al. Front Med (Lausanne). .

Abstract

The treatment of multidrug-resistant Gram-negative bacteria (MDR-GNB) infections in critically ill patients presents many challenges. Since an effective treatment should be administered as soon as possible, resistance to many antimicrobial classes almost invariably reduces the probability of adequate empirical coverage, with possible unfavorable consequences. In this light, readily available patient's medical history and updated information about the local microbiological epidemiology remain critical for defining the baseline risk of MDR-GNB infections and firmly guiding empirical treatment choices, with the aim of avoiding both undertreatment and overtreatment. Rapid diagnostics and efficient laboratory workflows are also of paramount importance both for anticipating diagnosis and for rapidly narrowing the antimicrobial spectrum, with de-escalation purposes and in line with antimicrobial stewardship principles. Carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii are being reported with increasing frequencies worldwide, although with important variability across regions, hospitals and even single wards. In the past few years, new treatment options, such as ceftazidime/avibactam, meropenem/vaborbactam, ceftolozane/tazobactam, plazomicin, and eravacycline have become available, and others will become soon, which have provided some much-awaited resources for effectively counteracting severe infections due to these organisms. However, their optimal use should be guaranteed in the long term, for delaying as much as possible the emergence and diffusion of resistance to novel agents. Despite important progresses, pharmacokinetic/pharmacodynamic optimization of dosages and treatment duration in critically ill patients has still some areas of uncertainty requiring further study, that should take into account also resistance selection as a major endpoint. Treatment of severe MDR-GNB infections in critically ill patients in the near future will require an expert and complex clinical reasoning, of course taking into account the peculiar characteristics of the target population, but also the need for adequate empirical coverage and the more and more specific enzyme-level activity of novel antimicrobials with respect to the different resistance mechanisms of MDR-GNB.

Keywords: Acinetobacter; ICU; Klebsiella; MDR; Pseudomonas; antimicrobial resistance; gram-negative.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Current clinical reasoning for the treatment of serious MDR-GNB infections in critically-ill patients. MDR-GNB, Multi-drug resistant Gram-negative bacteria; CRE, carbapenem-resistant Enterobacterales; CRPA, carbapenem-resistant Pseudomonas aeruginosa; CRAB, carbapenem-resistant Acinetobacter baumannii; BL-BLI, β-lactam/β-lactamase inhibitors; VAP, ventilator-associated pneumonia.
Figure 2
Figure 2
Possible future clinical reasoning for the treatment of serious MDR-GNB infections in critically-ill patients. MDR-GNB, Multi-drug resistant Gram-negative bacteria; CRE, carbapenem-resistant Enterobacterales; CRPA, carbapenem-resistant Pseudomonas aeruginosa; CRAB, carbapenem-resistant Acinetobacter baumannii; VAP, ventilator-associated pneumonia.

Similar articles

Cited by

References

    1. Bassetti M, Welte T, Wunderink RG. Treatment of Gram-negative pneumonia in the critical care setting: is the beta-lactam antibiotic backbone broken beyond repair? Crit Care. (2016) 20:19. 10.1186/s13054-016-1197-5 - DOI - PMC - PubMed
    1. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. . Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. (2013) 13:785–96. 10.1016/S1473-3099(13)70190-7 - DOI - PMC - PubMed
    1. Giacobbe DR, di Masi A, Leboffe L, Del Bono V, Rossi M, Cappiello D, et al. . Hypoalbuminemia as a predictor of acute kidney injury during colistin treatment. Sci Rep. (2018) 8:11968. 10.1038/s41598-018-30361-5 - DOI - PMC - PubMed
    1. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. . Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. (2011) 55:3284–94. 10.1128/AAC.01733-10 - DOI - PMC - PubMed
    1. Giacobbe DR, Mikulska M, Viscoli C. Recent advances in the pharmacological management of infections due to multidrug resistant gram-negative bacteria. Expert Rev Clin Pharmacol. (2018) 11:1219–36. 10.1080/17512433.2018.1549487 - DOI - PubMed