Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2019 May;51(5):804-814.
doi: 10.1038/s41588-019-0403-1. Epub 2019 May 1.

Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors

Nicole M Warrington  1 Robin N Beaumont  2 Momoko Horikoshi  3   4   5 Felix R Day  6 Øyvind Helgeland  7   8   9 Charles Laurin  10   11 Jonas Bacelis  12 Shouneng Peng  13   14 Ke Hao  13   14 Bjarke Feenstra  15 Andrew R Wood  2 Anubha Mahajan  4   5 Jessica Tyrrell  2   16 Neil R Robertson  4   5 N William Rayner  4   5   17 Zhen Qiao  1 Gunn-Helen Moen  18   19 Marc Vaudel  7 Carmen J Marsit  20 Jia Chen  21 Michael Nodzenski  22 Theresia M Schnurr  23 Mohammad H Zafarmand  24   25 Jonathan P Bradfield  26   27 Niels Grarup  23 Marjolein N Kooijman  28   29   30 Ruifang Li-Gao  31 Frank Geller  15 Tarunveer S Ahluwalia  23   32   33 Lavinia Paternoster  10 Rico Rueedi  34   35 Ville Huikari  36 Jouke-Jan Hottenga  37   38   39 Leo-Pekka Lyytikäinen  40   41 Alana Cavadino  42   43 Sarah Metrustry  44 Diana L Cousminer  45   46 Ying Wu  47 Elisabeth Thiering  48   49 Carol A Wang  50 Christian T Have  23 Natalia Vilor-Tejedor  51   52 Peter K Joshi  53 Jodie N Painter  54 Ioanna Ntalla  55 Ronny Myhre  56 Niina Pitkänen  57 Elisabeth M van Leeuwen  29 Raimo Joro  58 Vasiliki Lagou  4   59   60 Rebecca C Richmond  10   11 Ana Espinosa  61   62   63   64 Sheila J Barton  65 Hazel M Inskip  65   66 John W Holloway  67 Loreto Santa-Marina  63   68   69 Xavier Estivill  70   71 Wei Ang  72 Julie A Marsh  72 Christoph Reichetzeder  73 Letizia Marullo  74 Berthold Hocher  75   76 Kathryn L Lunetta  77   78 Joanne M Murabito  78   79 Caroline L Relton  10   11 Manolis Kogevinas  61   62   63   64 Leda Chatzi  80 Catherine Allard  81 Luigi Bouchard  81   82   83 Marie-France Hivert  84   85   86 Ge Zhang  87   88   89 Louis J Muglia  87   88   89 Jani Heikkinen  90 EGG ConsortiumCamilla S Morgen  91 Antoine H C van Kampen  92   93 Barbera D C van Schaik  92 Frank D Mentch  26 Claudia Langenberg  6 Jian'an Luan  6 Robert A Scott  6 Jing Hua Zhao  6 Gibran Hemani  10   11 Susan M Ring  10   11 Amanda J Bennett  5 Kyle J Gaulton  4   94 Juan Fernandez-Tajes  4 Natalie R van Zuydam  4   5 Carolina Medina-Gomez  28   29   95 Hugoline G de Haan  31 Frits R Rosendaal  31 Zoltán Kutalik  35   96 Pedro Marques-Vidal  97 Shikta Das  98 Gonneke Willemsen  37   38   39 Hamdi Mbarek  37   38   39   99 Martina Müller-Nurasyid  100   101   102 Marie Standl  48 Emil V R Appel  23 Cilius E Fonvig  23   103   104 Caecilie Trier  23   103 Catharina E M van Beijsterveldt  38 Mario Murcia  63   105 Mariona Bustamante  61   62   63 Sílvia Bonas-Guarch  106 David M Hougaard  107 Josep M Mercader  106   108   109 Allan Linneberg  110   111 Katharina E Schraut  53 Penelope A Lind  54 Sarah E Medland  54 Beverley M Shields  112 Bridget A Knight  112 Jin-Fang Chai  113 Kalliope Panoutsopoulou  17 Meike Bartels  37   38   39 Friman Sánchez  106   114 Jakob Stokholm  32 David Torrents  106   115 Rebecca K Vinding  32 Sara M Willems  29 Mustafa Atalay  58 Bo L Chawes  32 Peter Kovacs  116 Inga Prokopenko  4   117 Marcus A Tuke  2 Hanieh Yaghootkar  2 Katherine S Ruth  2 Samuel E Jones  2 Po-Ru Loh  118   119 Anna Murray  2 Michael N Weedon  2 Anke Tönjes  120 Michael Stumvoll  116   120 Kim F Michaelsen  121 Aino-Maija Eloranta  58 Timo A Lakka  58   122   123 Cornelia M van Duijn  29 Wieland Kiess  124 Antje Körner  116   124 Harri Niinikoski  125   126 Katja Pahkala  57   127 Olli T Raitakari  57   128 Bo Jacobsson  9   12 Eleftheria Zeggini  17   129 George V Dedoussis  130 Yik-Ying Teo  113   131   132 Seang-Mei Saw  113   133 Grant W Montgomery  54 Harry Campbell  53 James F Wilson  53   134 Tanja G M Vrijkotte  24 Martine Vrijheid  61   62   63 Eco J C N de Geus  37   38   39 M Geoffrey Hayes  135 Haja N Kadarmideen  136 Jens-Christian Holm  23   103 Lawrence J Beilin  137 Craig E Pennell  50 Joachim Heinrich  48   138 Linda S Adair  139 Judith B Borja  140   141 Karen L Mohlke  47 Johan G Eriksson  142   143   144 Elisabeth E Widén  90 Andrew T Hattersley  2   112 Tim D Spector  44 Mika Kähönen  145   146 Jorma S Viikari  147   148 Terho Lehtimäki  40   41 Dorret I Boomsma  37   38   39   99 Sylvain Sebert  36   149   150   151 Peter Vollenweider  97 Thorkild I A Sørensen  10   23   91 Hans Bisgaard  32 Klaus Bønnelykke  32 Jeffrey C Murray  152 Mads Melbye  15   153 Ellen A Nohr  154 Dennis O Mook-Kanamori  31   155 Fernando Rivadeneira  28   29   95 Albert Hofman  29 Janine F Felix  28   29   30 Vincent W V Jaddoe  28   29   30 Torben Hansen  23 Charlotta Pisinger  156 Allan A Vaag  110   157 Oluf Pedersen  23 André G Uitterlinden  28   29   95 Marjo-Riitta Järvelin  36   149   150   158   159 Christine Power  43 Elina Hyppönen  43   160   161 Denise M Scholtens  22 William L Lowe Jr  135 George Davey Smith  10   11   162 Nicholas J Timpson  10   11 Andrew P Morris  4   163   164 Nicholas J Wareham  6 Hakon Hakonarson  26   45   165 Struan F A Grant  26   45   46   165 Timothy M Frayling  2 Debbie A Lawlor  10   11   162 Pål R Njølstad  7   8 Stefan Johansson  7   166 Ken K Ong  6   167 Mark I McCarthy  4   5   168 John R B Perry  6 David M Evans  169   170   171 Rachel M Freathy  172   173
Affiliations
Meta-Analysis

Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors

Nicole M Warrington et al. Nat Genet. 2019 May.

Abstract

Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.

PubMed Disclaimer

Conflict of interest statement

Competing interests statement

A.A.V. is an employee of AstraZeneca. S.F.A.G. has received support from GSK for research that is not related to the study presented in this paper. D.A.L. has received support from Medtronic LTD and Roche Diagnostics for biomarker research that is not related to the study presented in this paper. M.I.M. serves on advisory panels for Pfizer, NovoNordisk, Zoe Global; has received honoraria from Merck, Pfizer, NovoNordisk and Eli Lilly; has stock options in Zoe Global; has received research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, Takeda.

Figures

Figure 1
Figure 1. Structural equation modelling (SEM)-adjusted fetal and maternal effects for the 193 lead SNPs that were identified in the GWAS of either own birth weight (left panel) or offspring birth weight (right panel) with minor allele frequency greater than 5%.
The SEM included 85,518 individuals from the UK Biobank with both their own and offspring’s birth weight, 178,980 and 93,842 individuals from the UK Biobank and the EGG consortium with only their own birth weight or offspring’s birth weight respectively. The colour of each point indicates the SEM-adjusted fetal effect on own birth weight association P-value and the shape of each point indicates the SEM-adjusted maternal effect on offspring birth weight association P-value. P-values for the fetal and maternal effect were calculated using a two-sided Wald test. SNPs which are labelled with the name of the closest gene are those which were identified in the GWAS of own birth weight but whose effects are mediated through the maternal genome (left panel) and SNPs that were identified in the GWAS of offspring birth weight but whose effects are mediated through the fetal genome (right panel). SNPs are aligned to the birth weight increasing allele from the GWAS.
Figure 2
Figure 2. Genome-wide genetic correlation between birth weight and a range of traits and diseases in later life.
Genetic correlation (rg) and corresponding 95% confidence intervals between birth weight and the traits were estimated using linkage disequilibrium (LD) score regression in LD Hub. Genetic correlations were estimated from the summary statistics of the weighted linear model (WLM)-adjusted fetal genome-wide association study (GWAS; WLM-adjusted fetal effect on own birth weight) and the WLM-adjusted maternal GWAS (WLM-adjusted maternal effect on offspring birth weight). The total sample size included in the WLM-adjusted GWAS is 406,063 individuals with their own and/or their offspring’s birth weight. The genetic correlation estimates are colour coded according to their intensity and direction (red for positive correlation and blue for negative correlation). HOMA-B/IR, homeostasis model assessment of beta-cell function/insulin resistance; HbA1c, hemoglobin A1c; ADHD, attention deficit hyperactivity disorder. See Supplementary Table 10 for the references for each of the traits and diseases displayed and the genetic correlation results for other traits and diseases.
Figure 3
Figure 3. Mendelian randomization (MR) to assess the causal effect of maternal intrauterine exposures on offspring birth weight (adapted from Lawlor et al. 44)
a. Since maternal and fetal genotypes are correlated, it is essential to account for offspring genotype in this analysis. The continuous, thin arrow represents the relationship between the genetic instrument and intrauterine exposure. The dashed arrows represent potential confounding via maternal characteristics which, under MR assumptions, are not associated with the genetic instrument. The dotted arrows represent potential violation of MR assumptions via offspring genotype. The thick arrow represents the causal effect of interest. b. Higher offspring birth weight is caused by direct fetal genetic effects of height-raising alleles and indirect effects of maternal height-raising alleles. Maternal indirect effects of height-raising alleles may increase offspring birth weight by increasing the space available for growth, but we cannot rule out alternative explanations e.g. assortative mating. c. Higher maternal fasting glucose levels increase offspring birth weight. Conversely, direct fetal genetic effects of glucose-raising alleles reduce birth weight. This is likely due to their effects on insulin: variants that lower maternal insulin levels increase maternal glucose, which crosses the placenta and stimulates fetal insulin-mediated growth. However, the same variants in the fetus cause lower fetal insulin levels, and consequently, reduced fetal insulin-mediated growth. d. Higher maternal SBP is causally associated with lower offspring birth weight. After adjusting for maternal effects, there was no evidence of an effect of offspring’s own SBP genetic score on their own birth weight. SEP, socio-economic position; BW, birth weight; FPG, fasting plasma glucose; SBP, systolic blood pressure. 1 SD of BW = 484g,
Figure 4
Figure 4. Mendelian randomization (MR) to assess the causal effect of intrauterine growth on offspring adult outcomes, using maternal intrauterine exposures that influence fetal growth.
a. Maternal genotype should be associated with offspring birth weight independently of offspring genotype, so it is essential to adjust the analysis for offspring genotype. The continuous, thin, arrow represents the relationship between the genetic instrument and intrauterine exposure. The long-dashed arrows denote the (maternal and possibly fetal) genotype associations with birth weight; these arrows highlight the assumption that genetic variation influences offspring adult outcome via intrauterine growth, not birth weight. The short-dashed arrows represent potential confounding via maternal and offspring characteristics. The dotted arrow represents potential violation of assumptions of the MR analysis via offspring genotype. The thick arrow represents the causal effect of interest. We have not estimated the size of the causal effect as we do not have effect estimates for the SNP-maternal intrauterine exposures influencing fetal growth. However, we have used the presence/absence and direction of association in 3,886 mother-offspring pairs to indicate whether the intrauterine environment causes changes in adult offspring SBP (see Supplementary Table 18 for full results). b. Our results demonstrate that the observed negative correlation between birth weight and later SBP may be driven by the causal effect of higher maternal SBP on lower offspring birth weight (red arrow), in combination with the subsequent transmission of SBP-associated alleles to offspring (blue arrow), which then increase offspring SBP, rather than by long-term developmental compensations to adverse intrauterine conditions. SEP, socio-economic position; BW, birth weight; SBP, systolic blood pressure.

References

    1. Barker DJ, et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–67. - PubMed
    1. Martin-Gronert MS, Ozanne SE. Mechanisms underlying the developmental origins of disease. Reviews in endocrine & metabolic disorders. 2012;13:85–92. doi: 10.1007/s11154-012-9210-z. - DOI - PubMed
    1. Lumey LH, Stein AD, Susser E. Prenatal famine and adult health. Annual review of public health. 2011;32:237–262. doi: 10.1146/annurev-publhealth-031210-101230. - DOI - PMC - PubMed
    1. Ben-Shlomo Y, Smith GD. Deprivation in infancy or in adult life: which is more important for mortality risk? Lancet. 1991;337:530–534. - PubMed
    1. Horikoshi M, et al. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538:248–252. doi: 10.1038/nature19806. - DOI - PMC - PubMed

Publication types

MeSH terms

Grants and funding