Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 2;19(1):494.
doi: 10.1186/s12889-019-6797-y.

Social network analysis to characterize women victims of violence

Affiliations

Social network analysis to characterize women victims of violence

Michela Leone et al. BMC Public Health. .

Abstract

Background: In Europe, it is estimated that one third of women had experienced at least one physical or sexual violence after their 15. Taking into account the severe health consequences, the Emergency Department (ED), may offer an opportunity to recognize when an aggression is part of the spectrum of violence. This study applies Social Network analysis (SNA) to ED data in the Lazio region with the objective to identify patterns of diagnoses, within all the ED accesses of women experiencing an aggression, that are signals for gender-based violence against women. We aim to develop a risk assessment tool for ED professionals in order to strength their ability to manage victims of violence.

Methods: A cohort of 124,691 women aged 15-70 with an ED visit for aggression between 2003 and 2015 was selected and, for each woman, the ED history of diagnoses and traumas was reconstructed. SNA was applied on all these diagnoses and traumas, including also 9 specific violence diagnoses. SNA community detection algorithms and network centrality measures were used to detect diagnostic patterns more strongly associated to violence. A logistic model was developed to validate the capability of these patterns to predict the odds for a woman of having an history of violence. Model results were summed up into a risk chart.

Results: Among women experiencing an aggression, SNA identified four communities representing specific violence-related patterns of diagnoses. Diagnoses having a central role in the violence network were alcohol or substance abuse, pregnancy-related conditions and psychoses. These high-risk violence related patterns accounted for at most 20% of our cohort. The logistic model had good predictive accuracy and predictive power confirming that diagnosis patterns identified through the SNA are meaningful in the violence recognition.

Conclusions: Routine ED data, analyzed using SNA, can be a first-line warning to recognize when an aggression related access is part of the spectrum of gender-based violence against women. Increasing the available number of predictors, such procedures may be proven to support ED staff in identifying early signs of violence to adequately support the victims and mitigate the harms.

Keywords: Emergency department; First line screening; Gender-based violence; Patterns of diagnoses; Social network analysis.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The Department of Epidemiology is a public body of the Regional Health Service – Lazio Region. According to the Regional Law (LR no. 4 of 28 June 2013), the Department is in charge of the use, management, and integration of the Regional Health Information Systems (art.35(5) LR4/2013) in order to perform epidemiological and evaluation studies (art.35(4) LR4/2013); all data are managed using anonymised codes. Ethics approval was allowed by the “General Authorisation to Process Personal Data for Scientific Research Purposes” (n.9/2016) from the Italian Data Protection Authority.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Representation of the network (part a) and communities (part b). Legend: The network represents connections between violence-related diagnoses, other ED diagnoses and traumas. The orange, violet, green and yellow communities are detected as the strongest links (over the 95th percentile) within the network

References

    1. Ellsberg M, Arango DJ, Morton M, Gennari F, Kiplesund S, Contreras M, et al. Prevention of violence against women and girls: what does the evidence say? Lancet (London, England) 2015;385:1555–1566. doi: 10.1016/S0140-6736(14)61703-7. - DOI - PubMed
    1. European Union Agency for Fundamental Rights. Violence against women: an EU-wide survey. Main results report. 2014. http://fra.europa.eu/en/publication/2014/violence-against-women-eu-wide-.... Accessed 21 Nov 2018.
    1. Heise L, Ellsberg M, Gottmoeller M. A global overview of gender-based violence. Int J Gynecol Obstet. 2002;78:S5–14. doi: 10.1016/S0020-7292(02)00038-3. - DOI - PubMed
    1. Houry DE, Smith SG, Chen J, Basile KC, Gilbert LK, Merrick MT, et al. The National Intimate Partner and sexual violence survey (NISVS) | 2010-2012 state report the National Intimate Partner and sexual violence survey (NISVS): 2010-2012 state report. Natl Cent Inj Prev Control 2017. https://www.cdc.gov/violenceprevention/pdf/NISVS-StateReportBook.pdf. Accessed 12 Nov 2017.
    1. Presidency of the Council of Ministers, National Institute of Statistics. Violence against women inside and outside family [in Italian]. 2014. http://www.istat.it/it/files/2015/06/Violenze_contro_le_donne.pdf?title=.... Accessed 1 Mar 2018.

MeSH terms