Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2019 Jun 1;149(6):915-922.
doi: 10.1093/jn/nxz024.

Metabolomics Reveal Altered Postprandial Lipid Metabolism After a High-Carbohydrate Meal in Men at High Genetic Risk of Diabetes

Affiliations
Free article
Randomized Controlled Trial

Metabolomics Reveal Altered Postprandial Lipid Metabolism After a High-Carbohydrate Meal in Men at High Genetic Risk of Diabetes

Edyta Adamska-Patruno et al. J Nutr. .
Free article

Abstract

Background: The transcription factor 7-like 2 (TCF7L2) gene confers one of the strongest genetic predispositions to type 2 diabetes, but diabetes development can be modified by diet.

Objective: The aim of our study was to evaluate postprandial metabolic alterations in healthy men with a high genetic risk of diabetes, after two meals with varying macronutrient content.

Methods: The study was conducted in 21 homozygous nondiabetic men carrying the high-risk (HR, n = 8, age: 31.2 ± 6.3 y, body mass index (BMI, kg/m2) 28.5 ± 8.1) or low-risk (LR, n = 13, age: 35.2 ± 10.3 y, BMI: 28.1 ± 6.4) genotypes at the rs7901695 locus. During two meal challenge test visits subjects received standardized isocaloric (450 kcal) liquid meals: high-carbohydrate (HC, carbohydrates: 89% of energy) and normo-carbohydrate (NC, carbohydrates: 45% of energy). Fasting (0 min) and postprandial (30, 60, 120, 180 min) plasma samples were analyzed for metabolite profiles through untargeted metabolomics. Metabolic fingerprinting was performed on an ultra-high-performance liquid chromatography (UHPLC) system connected to an iFunnel quadrupole-time-of-flight (Q-TOF) mass spectrometer.

Results: In HR-genotype men, after the intake of an HC-meal, we noted a significantly lower area under the curves (AUCs) of postprandial plasma concentrations of most of the phospholipids (-37% to -53%, variable importance in the projection (VIP) = 1.2-1.5), lysophospholipids (-29% to -86%, VIP = 1.1-2.6), sphingolipids (-32% to -47%, VIP = 1.1-1.3), as well as arachidonic (-36%, VIP = 1.4) and oleic (-63%, VIP = 1.3) acids, their metabolites: keto- and hydoxy-fatty acids (-38% to -78%, VIP = 1.3-2.5), leukotrienes (-65% to -83%, VIP = 1.4-2.2), uric acid (-59%, VIP = 1.5), and pyroglutamic acid (-65%, VIP = 1.8). The AUCs of postprandial sphingosine concentrations were higher (125-832%, VIP = 1.9-3.2) after the NC-meal, AUCs of acylcarnitines were lower (-21% to -61%, VIP = 1.1-2.4), and AUCs of fatty acid amides were higher (51-508%, VIP = 1.7-3.1) after the intake of both meals.

Conclusions: In nondiabetic men carrying the TCF7L2 HR genotype, subtle but detectable modifications in intermediate lipid metabolism are induced by an HC-meal. This trial was registered at www.clinicaltrials.gov as NCT03792685.

Keywords: TCF7L2 gene; high-carbohydrate meal; normo-carbohydrate meal; nutrigenetics; nutrimetabolomics; postprandial metabolic fingerprinting; type 2 diabetes mellitus risk; ultra-high-performance liquid chromatography.

PubMed Disclaimer

Publication types

Associated data