Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 22;11(20):18564-18570.
doi: 10.1021/acsami.9b02315. Epub 2019 May 10.

Molecular Rectifiers on Silicon: High Performance by Enhancing Top-Electrode/Molecule Coupling

Molecular Rectifiers on Silicon: High Performance by Enhancing Top-Electrode/Molecule Coupling

Zachary A Lamport et al. ACS Appl Mater Interfaces. .

Abstract

One of the simplest molecular-scale electronic devices is the molecular rectifier. In spite of considerable efforts aimed at understanding structure-property relationships in these systems, devices with predictable and stable electronic properties are yet to be developed. Here, we demonstrate highly efficient current rectification in a new class of compounds that form self-assembled monolayers on silicon. We achieve this by exploiting the coupling of the molecules with the top electrode which, in turn, controls the position of the relevant molecular orbitals. The molecules consist of a silane anchoring group and a nitrogen-substituted benzene ring, separated by a propyl group and imine linkage, and result from a simple, robust, and high-yield synthetic procedure. We find that when incorporated in molecular diodes, these compounds can rectify current by as much as 3 orders of magnitude, depending on their structure, with a maximum rectification ratio of 2635 being obtained in ( E)-1-(4-cyanophenyl)- N-(3-(triethoxysilyl) propyl)methanimine (average Ravg = 1683 ± 458, at an applied voltage of 2 V). This performance is on par with that of the best molecular rectifiers obtained on metallic electrodes, but it has the advantage of lower cost and more efficient integration with current silicon technologies. The development of molecular rectifiers on silicon may yield hybrid systems that can expand the use of silicon toward novel functionalities governed by the molecular species grafted onto its surface.

Keywords: electrode coupling; lone electron pair; molecular electronics; molecular rectifier; self-assembled monolayer; silane.

PubMed Disclaimer

LinkOut - more resources