Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Dec;46(4):442-449.
doi: 10.1016/j.jmir.2015.09.007.

An Evidence-Based Review of Total Body Irradiation

Affiliations
Review

An Evidence-Based Review of Total Body Irradiation

Mitchell Peters et al. J Med Imaging Radiat Sci. 2015 Dec.

Abstract

The purpose of this literature review is to investigate clinical treatment methods of total body irradiation within the context of a clinical department adopting a paediatric cohort with no existing technique. An extensive review of the literature was conducted using PubMed, Science Direct, Google Scholar, and Clinicians Knowledge Network. Articles were limited to nonhelical tomotherapy, nonparticle therapies, and those using hyperfractionated regimes. Total marrow irradiation was excluded because of national treatment and trial limitations. Of the numerous patient positioning methods present within the literature, the most comfortable and reproducible positioning methods for total body irradiation include both supine and the supine and/or prone combination. These positions increased stability and patient comfort during treatment, while also facilitating computed tomography data acquisition at the simulation stage. Ideally, dose calculations should be performed using a three-dimensional treatment planning system and quality assurance procedures that include in vivo dosimetry measurements. The available literature also suggests inhomogeneity correction factors and intensity modulation are superior to conventional open field techniques and should be implemented within developing protocols. Dynamic machine dose modulation is suggested to reduce department impact, removing the need for tissue compensators and accessory shielding devices, while providing significant improvements to treatment time and dose accuracy. Further long-term survival and intensity modulation studies are warranted, including direct comparisons of both dose modulation and treatment efficiency.

Keywords: Radiation Therapy; bone marrow transplant; external beam radiation therapy; oncology; paediatric; stem cell transplant; total body irradiation.

PubMed Disclaimer

LinkOut - more resources