Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 18;27(6):8375-8386.
doi: 10.1364/OE.27.008375.

Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging

Free article

Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging

Junyu Li et al. Opt Express. .
Free article

Abstract

Metamaterial absorbers, consisting of assembling arrays of optical resonators with subwavelength dimensions and spacing, allow efficiently absorption electromagnetic radiation by leveraging the strong electrical and magnetic resonances. Beyond the enhanced absorption, there is a growing interest to realize multi-functional absorbers, for example, absorbers with extended bandwidth, strong polarization extinction ratio, to name a few. Traditionally, designing multi-functional absorbers require complex brute-force optimizations with sizable parameter space, which turn out to be rather inefficient. Here, using the particle swarm optimization algorithm, we design and experimentally demonstrate broadband and highly polarization selective mid-IR metal-insulator-metal absorbers, covering the technologically important 3-5 μm atmospheric transparency band. With spectrally averaged absorption exceeding 70%, a high polarization extinction ratio of 40.6 is concurrently achieved by the algorithm. We also investigate the incident angle dependence of the spectral absorption and clarify the origin of optical losses. By integrating with the growing range of mid-IR detectors and imagers, our devices can enable new applications such as mid-IR full Stokes imaging polarimetry for remote sensing.

PubMed Disclaimer

LinkOut - more resources