Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 3;18(1):51.
doi: 10.1186/s12938-019-0670-1.

Look me in the eye: evaluating the accuracy of smartphone-based eye tracking for potential application in autism spectrum disorder research

Affiliations

Look me in the eye: evaluating the accuracy of smartphone-based eye tracking for potential application in autism spectrum disorder research

Maximilian A R Strobl et al. Biomed Eng Online. .

Abstract

Background: Avoidance to look others in the eye is a characteristic symptom of Autism Spectrum Disorders (ASD), and it has been hypothesised that quantitative monitoring of gaze patterns could be useful to objectively evaluate treatments. However, tools to measure gaze behaviour on a regular basis at a manageable cost are missing. In this paper, we investigated whether a smartphone-based tool could address this problem. Specifically, we assessed the accuracy with which the phone-based, state-of-the-art eye-tracking algorithm iTracker can distinguish between gaze towards the eyes and the mouth of a face displayed on the smartphone screen. This might allow mobile, longitudinal monitoring of gaze aversion behaviour in ASD patients in the future.

Results: We simulated a smartphone application in which subjects were shown an image on the screen and their gaze was analysed using iTracker. We evaluated the accuracy of our set-up across three tasks in a cohort of 17 healthy volunteers. In the first two tasks, subjects were shown different-sized images of a face and asked to alternate their gaze focus between the eyes and the mouth. In the last task, participants were asked to trace out a circle on the screen with their eyes. We confirm that iTracker can recapitulate the true gaze patterns, and capture relative position of gaze correctly, even on a different phone system to what it was trained on. Subject-specific bias can be corrected using an error model informed from the calibration data. We compare two calibration methods and observe that a linear model performs better than a previously proposed support vector regression-based method.

Conclusions: Under controlled conditions it is possible to reliably distinguish between gaze towards the eyes and the mouth with a smartphone-based set-up. However, future research will be required to improve the robustness of the system to roll angle of the phone and distance between the user and the screen to allow deployment in a home setting. We conclude that a smartphone-based gaze-monitoring tool provides promising opportunities for more quantitative monitoring of ASD.

Keywords: Biomedical monitoring; Gaze tracking; Mental disorders; m-Health.

PubMed Disclaimer

Conflict of interest statement

FL and CG are employees of F. Hoffmann-La Roche AG, Basel, Switzerland. ML and LD are consultants to F. Hoffmann-La Roche AG, Basel, Switzerland. MS and MV declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study overview. We evaluated if iTracker [11] can provide a cheap, widely deployable method for tracking gaze behaviour using smartphones in ASD patients. a Example of the data collection set-up. We recorded subjects alternating between fixating on the eyes and the mouth of a face printout attached to the screen. Arrows indicate the sequence in which the different facial features were visited. Based on the so obtained videos, we evaluated how well iTracker can distinguish between the two gaze locations. be True gaze locations for each of the four tasks in our study. b Task 1: A 4x4 grid of points used for calibration. c Task 2: A face to test how accurately iTracker can separate gaze towards the eyes from gaze focussed on the mouth. d Task 3: Enlarged version of c, to test if separating eyes and mouth improves the ability to distinguish between gaze towards the eyes, and gaze towards the mouth. e Task 4: Subjects trace out a circle. f Outline of the data processing work flow: The obtained videos were split into frames, pre-processed, and gaze predictions obtained with iTracker. Predictions may be refined using a further calibration step
Fig. 2
Fig. 2
Results for one subject in our study (Subject 8). Crosses mark iTracker’s predictions. Points in matching colour indicate the true gaze locations for those predictions. Shaded areas represent the phone screen, and for Task 2 and 3 also the outline of the eyes and mouth. ac Gaze estimates for Task 1. df Estimates for Task 2. gi Gaze estimates for Task 3. jl Estimates for Task 4. In the top row (a, d, g, j), the raw output of iTracker is shown. The middle and bottom row of the panel show these predictions corrected using either a SVR-based (b, e, h, k) or a linear transformation-based calibration method (c, f, i, l). Overall, iTracker manages to capture the true underlying pattern, although it appears shifted and scaled with respect to the reference (a, d, g, j). Calibration can rectify this, resulting in good overlap between true and estimated gaze positions (middle and bottom row; see also Fig. 3). Moreover, we find that the simple linear transformation performs better than the SVR-based method (compare middle and bottom row)
Fig. 3
Fig. 3
Quantification of iTracker’s Error without and with calibration. a Error in distinguishing between gaze towards eye and mouth of a face on screen (Task 2; Fig. 1c). Points were classified by which feature they were closest to. Shown is the proportion of wrongly assigned frames for each subject. Following calibration, both accuracy and variance improve. b Results for Task 3, which was similar to Task 2, but with an enlarged face in which eyes and mouth are further apart (Figure 1d). Performance appears more variable than for Task 2, but after post-processing with the linear calibration method very good accuracy and robustness is achieved. c Participants traced out the outline of a circle (Task 4; Fig. 1e). Shown is the mean Euclidean distance between the prediction and the true outline of the circle for each subject. Again calibration reduces variance and improves accuracy

Similar articles

Cited by

References

    1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 2013. 10.1176/appi.books.9780890425596.
    1. Autistic Self Advocacy Network. About Autism. www.autisticadvocacy.org/about-asan/about-autism. The National Autistic Society. 2017. http://autisticadvocacy.org/about-asan/about-autism/.
    1. Kanner L. Autistic disturbances of affective contact. Nervous Child. 1943;2:217–250. doi: 10.1105/tpc.11.5.949. - DOI - PubMed
    1. Black MH, Chen NTM, Iyer KK, Lipp OV, Bölte S, Falkmer M, Tan T, Girdler S. Mechanisms of facial emotion recognition in autism spectrum disorders: insights from eye tracking and electroencephalography. Neurosci Biobehav Rev. 2017 doi: 10.1016/j.neubiorev.2017.06.016. - DOI - PubMed
    1. Vidal M, Turner J, Bulling A, Gellersen H. Wearable eye tracking for mental health monitoring. New York: Elsevier; 2012.

Publication types