Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 3;19(1):179.
doi: 10.1186/s12870-019-1782-2.

Genetic factors affecting Fusarium head blight resistance improvement from introgression of exotic Sumai 3 alleles (including Fhb1, Fhb2, and Fhb5) in hard red spring wheat

Affiliations

Genetic factors affecting Fusarium head blight resistance improvement from introgression of exotic Sumai 3 alleles (including Fhb1, Fhb2, and Fhb5) in hard red spring wheat

Gurcharn Singh Brar et al. BMC Plant Biol. .

Abstract

Background: Fusarium head blight resistance genes, Fhb1 (for Type-II resistance), Fhb2 (Type-II), and Fhb5 (Type-I plus some Type-II), which originate from Sumai 3, are among the most important that confer resistance in hexaploid wheat. Near-isogenic lines (NILs), in the CDC Alsask (susceptible; n = 32) and CDC Go (moderately susceptible; n = 38) backgrounds, carrying these genes in all possible combinations were developed using flanking microsatellite markers and evaluated for their response to FHB and deoxynivalenol (DON) accumulation in eight environments. NILs were haplotyped with wheat 90 K iSelect assay to elucidate the genomic composition and confirm alleles' presence. Other than evaluating the effects of three major genes in common genetic background, the study elucidated the epistatic gene interactions as they influence FHB measurements; identified loci other than Fhb1, Fhb2, and Fhb5, in both recurrent and donor parents and examined annotated proteins in gene intervals.

Results: Genotyping using 81,857 single nucleotide polymorphism (SNP) markers revealed polymorphism on all chromosomes and that the NILs carried < 3% of alleles from the resistant donor. Significant improvement in field resistance (Type-I + Type-II) resulted only among the CDC Alsask NILs, not the CDC Go NILs. The phenotypic response of NILs carrying combinations of Sumai 3 derived genes suggested non-additive responses and Fhb5 was as good as Fhb1 in conferring field resistance in both populations. In addition to Fhb1, Fhb2, and Fhb5, four to five resistance improving alleles in both populations were identified and three of five in CDC Go were contributed by the susceptible parent. The introgressed chromosome regions carried genes encoding disease resistance proteins, protein kinases, nucleotide-binding and leucine rich repeats' domains. Complex epistatic gene-gene interactions among marker loci (including Fhb1, Fhb2, Fhb5) explained > 20% of the phenotypic variation in FHB measurements.

Conclusions: Immediate Sumai 3 derivatives carry a number of resistance improving minor effect alleles, other than Fhb1, Fhb2, Fhb5. Results verified that marker-assisted selection is possible for the introgression of exotic FHB resistance genes, however, the genetic background of the recipient line and epistatic interactions can have a strong influence on expression and penetrance of any given gene.

Keywords: Cereals; Epistatic interactions; Fhb1; Fhb2; Fhb5; Fusarium head blight; Scab; Sumai 3; Wheat.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The experiments described in the manuscript were conducted according to ethical standards of Canada.

Consent for publication

Not applicable.

Competing interests

The authors declare that they do not have any competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Physical positions of Fhb1, Fhb2, Fhb5 in CDC Go and CDC Alsask near-isogenic lines (NILs). Graphical presentation of physical position of introgressed segments on chromosomes 3B (carrying Fhb1), 6B (carrying Fhb2), 5A (carrying Fhb5) from 04GC0139 (resistance donor parent, yellow segments) into CDC Alsask (upper panel) and CDC Go (lower panel) (red segments) near-isogenic lines. The scale bar on left hand side indicates physical position (Mb) and the black bar on the right indicates haplotype segment carrying Fhb1, Fhb2 or Fhb5 gene. Each bar represents a genotype. The grey and blue segments indicate unknown and heterozygous alleles, respectively
Fig. 2
Fig. 2
Greenhouse evaluation of near-isogenic lines (NILs) with 3-ADON and 15-ADON chemotypes of Fusarium graminearum. Fusarium head blight severity in CDC Go and CDC Alsask NILs following point inoculation with 3-ADON and 15-ADON chemotypes of Fusarium graminearum (50,000 macroconidia/ml) (a) in the greenhouse at 14 and 21 days post inoculation (dpi) (b) Area under disease progress curve (AUDPC) was calculated from three ratings: 7, 14, and 21 dpi. Bars with the same letter code are not statistically significantly different according to Fisher’s least significant differences at P = 0.05. The LSmeans were calculated from all NILs (excluding parents and checks) in each population

Similar articles

Cited by

References

    1. McMullen M, Bergstrom G, de Wolf E, Dill-Macky R, Hershamn D, Shaner G, van Sanford D. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis. 2012;96:1712–1728. doi: 10.1094/PDIS-03-12-0291-FE. - DOI - PubMed
    1. Gilbert J, Haber S. Overview of some recent research developments in Fusarium head blight of wheat. Can J Plant Pathol. 2013;35:149–174. doi: 10.1080/07060661.2013.772921. - DOI
    1. Buertmayr H, Ban T, Anderson JA. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed. 2009;128:1–26. doi: 10.1111/j.1439-0523.2008.01550.x. - DOI
    1. Bai Guihua, Su Zhenqi, Cai Jin. Wheat resistance to Fusarium head blight. Canadian Journal of Plant Pathology. 2018;40(3):336–346. doi: 10.1080/07060661.2018.1476411. - DOI
    1. Beavis WD. QTL analyses: power, precision, and accuracy. In: Paterson AH, editor. Molecular dissection of complex traits. CRC press. Boca Raton. 1998. pp. 145–162.

Substances

LinkOut - more resources