Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 15:1118-1119:157-163.
doi: 10.1016/j.jchromb.2019.04.047. Epub 2019 Apr 24.

Urinary metabolomic profiling for noninvasive diagnosis of acute T cell-mediated rejection after kidney transplantation

Affiliations

Urinary metabolomic profiling for noninvasive diagnosis of acute T cell-mediated rejection after kidney transplantation

Sun-Young Kim et al. J Chromatogr B Analyt Technol Biomed Life Sci. .

Abstract

To improve early renal allograft function, it is important to develop a noninvasive diagnostic method for acute T cell-mediated rejection (TCMR). This study aims to explore potential noninvasive urinary biomarkers to screen for acute TCMR in kidney transplant recipients (KTRs) using untargeted metabolomic profiling. Urinary metabolites, collected from KTRs with stable graft function (STA) or acute TCMR episodes, were analyzed using liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses were performed to discriminate differences in urinary metabolites between the two groups. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of potential urinary biomarkers. Statistical analysis revealed the differences in urinary metabolites between the two groups and indicated several statistically significant metabolic features suitable for potential biomarkers. By comparing the retention times and mass fragmentation patterns of the chemicals in metabolite databases, samples, and standards, six of these features were clearly identified. ROC curve analysis showed the best performance of the training set (area under the curve value, 0.926; sensitivity, 90.0%; specificity, 84.6%) using a panel of five potential biomarkers: guanidoacetic acid, methylimidazoleacetic acid, dopamine, 4-guanidinobutyric acid, and L-tryptophan. The diagnostic accuracy of this model was 62.5% for an independent test dataset. LC-MS-based untargeted metabolomic profiling is a promising method to discriminate between acute TCMR and STA groups. Our model, based on a panel of five potential biomarkers, needs to be further validated in larger scale studies.

Keywords: Acute T cell-mediated rejection; Kidney transplantation; Liquid chromatography-tandem mass spectrometry; Metabolomic profiling; Metabolomics; Urine.

PubMed Disclaimer

LinkOut - more resources