Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 4;10(15):4177-4184.
doi: 10.1039/c9sc00078j. eCollection 2019 Apr 21.

Highly selective palladium-catalyzed one-pot, five-fold B-H/C-H cross coupling of monocarboranes with alkenes

Affiliations

Highly selective palladium-catalyzed one-pot, five-fold B-H/C-H cross coupling of monocarboranes with alkenes

Yunjun Shen et al. Chem Sci. .

Abstract

Palladium-catalyzed dehydrogenative B-H/C-H cross coupling of monocarborane anions with alkenes is reported, allowing for the first time the isolation of selectively penta-alkenylated boron clusters. The reaction cascade is regioselective for the cage positions, leading directly to B2-6 functionalization. Under mild and convenient conditions, styrenes, benzylic alkenes and aliphatic alkenes are demonstrated to be viable coupling partners with exclusive vinyl-type B-C bond formation. Multiple subsequent transformations provide access to directing group-free products, chiral derivatives and penta-alkylated cages. The five-fold coupling, combined with the latter reactions, represents a powerful methodology for the straightforward synthesis of new classes of boron clusters.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. (a) Previously reported metal-catalyzed functionalization of {CB11} cages and (b) regioselective dehydrogenative penta-alkenylation by direct B–H/C–H cross coupling.
Fig. 2
Fig. 2. X-ray crystal structures of (a) 3b and (b) 4b (cations, solvent molecules and styryl H atoms omitted for clarity, 30% displacement ellipsoids).
Scheme 1
Scheme 1. Synthesis of chiral 3u/v and 4u/v; curved arrows around R* indicate identical sense of absolute configuration.
Scheme 2
Scheme 2. Reduction of the double bond.
Fig. 3
Fig. 3. (a) 11B{1H} NMR spectrum and (b) X-ray crystal structure of palladium complex 1c–Pd (cation and H atoms omitted for clarity; 30% displacement ellipsoids).
Scheme 3
Scheme 3. Putative selective β-hydride elimination to explain the regioselectivity of double bond formation with benzyl and alkyl substrates.

Similar articles

Cited by

References

    1. Hosmane N. S., Boron Science: New Technologies and Applications, Taylor & Francis Books/CRC, Boca Raton, FL, 2011.
    2. Grimes R. N., Carboranes, Elsevier, Amsterdam, 3rd edn, 2016.
    1. Douvris C., Michl J. Chem. Rev. 2013;113:PR179–PR233. - PubMed
    2. Grimes R. N. Dalton Trans. 2015;44:5939–5956. - PubMed
    3. Núñez R., Tarrés M., Ferrer-Ugalde A., de Biani F. F., Teixidor F. Chem. Rev. 2016;116:14307–14378. - PubMed
    4. Núñez R., Romero I., Teixidor F., Viñas C. Chem. Soc. Rev. 2016;45:5147–5173. - PubMed
    5. Fischer S. P., Tomich A. W., Gui J., Lavallo V. Chem. Commun. 2019;55:1684–1701. - PubMed
    1. For reviews and selected examples, see:

    2. Kim K.-C., Reed C. A., Elliott D. W., Mueller L. J., Tham F., Lin L., Lambert J. B. Science. 2002;297:825–827. - PubMed
    3. Krossing I., Raabe I. Angew. Chem., Int. Ed. 2004;43:2066–2090. - PubMed
    4. Kato T., Reed C. A. Angew. Chem., Int. Ed. 2004;43:2908–2911. - PubMed
    5. Douvris C., Ozerov O. V. Science. 2008;31:1188–1190. - PubMed
    6. Reed C. A. Acc. Chem. Res. 2010;43:121–128. - PMC - PubMed
    7. Allemann O., Duttwyler S., Romanato P., Baldridge K. K., Siegel J. S. Science. 2011;332:574–577. - PubMed
    8. Volkis V., Douvris C., Michl J. J. Am. Chem. Soc. 2011;133:7801–7809. - PubMed
    9. Knapp C., Weakly Coordinating Anions: Halogenated Borates and Dodecaborates, in Comprehensive Inorganic Chemistry II, Elsevier, Amsterdam, 2013, vol. 1, pp. 651–679.
    10. Kordts N., Borner C., Panisch R., Saak W., Müller T. Organometallics. 2014;33:1492–1498.
    11. Shoji Y., Tanaka N., Mikami K., Uchiyama M., Fukushima T. Nat. Chem. 2014;6:498–503. - PubMed
    12. Osman K. M., Powell D. R., Wehmschulte R. J. Inorg. Chem. 2015;54:9195–9200. - PubMed
    13. Kitazawa Y., Takita R., Yoshida K., Muranaka A., Matsubara S., Uchiyama M. J. Org. Chem. 2017;82:1931–1935. - PubMed
    14. Pell C. J., Zhu Y., Huacuja R., Herbert D. E., Hughes R. P., Ozerov O. V. Chem. Sci. 2017;8:3178–3186. - PMC - PubMed
    15. Shao B., Bagdasarian A. L., Popov S., Nelson H. M. Science. 2017;355:403–1407. - PubMed
    16. Müller T., Natalie K., Sandra K., Rathjen S., Sieling T., Großekappenberg H., Schmidtmann M. Chem.–Eur. J. 2017;23:10068–10079. - PubMed
    17. Omann L., Pudasaini B., Irran E., Klare H. F. T., Baik M.-H., Oestreich M. Chem. Sci. 2018;9:5600–5607. - PMC - PubMed
    18. Wu Q., Qu Z.-W., Omann L., Irran E., Klare H. F. T., Oestreich M. Angew. Chem., Int. Ed. 2018;57:9176–9179. - PubMed
    19. Riddlestone I. M., Kraft A., Schaefer J., Krossing I. Angew. Chem., Int. Ed. 2018;57:13982–14024. - PubMed
    1. For selected publications, see:

    2. Finze M., Sprenger J. A. P., Schaack B. B. Dalton Trans. 2010;39:2708–2716. - PubMed
    3. Spokoyny A. M., Machan C. W., Clingerman D. J., Rosen M. S., Wiester M. J., Kennedy R. D., Stern C. L., Sarjeant A. A., Mirkin C. A. Nat. Chem. 2011;3:590–596. - PubMed
    4. El-Zaria M. E., Arii H., Nakamura H. Inorg. Chem. 2011;50:4149–4161. - PubMed
    5. Yao Z.-J., Jin G.-X. Coord. Chem. Rev. 2013;257:2522–2535.
    6. El-Hellani A., Lavallo V. Angew. Chem., Int. Ed. 2014;53:4489–4493. - PubMed
    7. Riley L. E., Chan A. P. Y., Taylor J., Man W. Y., Ellis D., Rosair G. M., Welch A. J., Sivaev I. B. Dalton Trans. 2016;45:1127–1137. - PubMed
    8. Holmes J., Pask C. M., Fox M. A., Willans C. E. Chem. Commun. 2016;52:6443–6446. - PubMed
    9. Estrada J., Lugo C. A., McArthur S. G., Lavallo V. Chem. Commun. 2016;52:1824–1826. - PubMed
    10. Šembera F., Plutnar J., Higelin A., Janoušek Z., Císařová I., Michl J. Inorg. Chem. 2016;55:3797–3806. - PubMed
    11. Zhou Y.-P., Raoufmoghaddam S., Szilvási T., Driess M. Angew. Chem., Int. Ed. 2016;55:12868–12872. - PubMed
    12. Coburger P., Schulz J., Klose J., Schwarze B., Sárosi M. B., Hey-Hawkins E. Inorg. Chem. 2017;56:292–304. - PubMed
    13. Selg C., Neumann W., Lönnecke P., Hey-Hawkins E., Zeitler K. Chem.–Eur. J. 2017;23:7932–7937. - PubMed
    14. Ilie A., Crespo O., Gimeno M. C., Holthausen M. C., Laguna A., Diefenbach M., Silvestru C. Eur. J. Inorg. Chem. 2017:2643–2652.
    15. Estrada J., Lavallo V. Angew. Chem., Int. Ed. 2017;56:9906–9909. - PubMed
    16. Cui P.-F., Lin Y.-J., Jin G.-X. Dalton Trans. 2017;46:15535–15540. - PubMed
    17. Eleazer B. J., Smith M. D., Popov A. A., Peryshkov D. V. Chem. Sci. 2018;9:2601–2608. - PMC - PubMed
    18. Rädisch T., Harmgarth N., Liebing P., Beltrán-Leiva M. J., Páez-Hernández D., Arratia-Pérez R., Engelhardt F., Hilfert L., Oehler F., Bussea S., Edelmann F. T. Dalton Trans. 2018;47:6666–6671. - PubMed
    19. Zhang Y., Zhang Z.-X., Wang Y., Li H., Bai F.-Q., Zhang H.-X. Inorg. Chem. Front. 2018;5:1016–1025.
    20. Oleshkevich E., Romero I., Teixidor F., Viñas C. Dalton Trans. 2018;47:14785–14798. - PubMed
    1. Han Y.-F., Jin G.-X. Acc. Chem. Res. 2014;47:3571–3579. - PubMed
    2. Housecroft C. E. J. Organomet. Chem. 2015;798:218–228.
    3. Estrada J., Lee S. E., McArthur S. G., El-Hellani A., Tham F. S., Lavallo V. J. Organomet. Chem. 2015;798:214–217.
    4. Clingerman D. J., Morris W., Mondloch J. E., Kennedy R. D., Sarjeant A. A., Stern C., Hupp J. T., Farhaab O. K., Mirkin C. A. Chem. Commun. 2015;51:6521–6523. - PubMed
    5. Ďordovič V., Tošner Z., Uchman M., Zhigunov A., Reza M., Ruokolainen J., Pramanik G., Cígler P., Kalíková K., Gradzielski M., Matějíček P. Langmuir. 2016;32:6713–6722. - PubMed
    6. Rodríguez-Hermida S., Tsang M. Y., Vignatti C., Stylianou K. C., Guillerm V., Pérez-Carvajal J., Teixidor F., Viñas C., Choquesillo-Lazarte D., Verdugo-Escamilla C., Peral I., Juanhuix J., Verdaguer A., Imaz I., Maspoch D., Planas J. G. Angew. Chem., Int. Ed. 2016;55:16049–16053. - PubMed
    7. Oleshkevich E., Viñas C., Romero I., Choquesillo-Lazarte D., Haukka M., Teixidor F. Inorg. Chem. 2017;56:5502–5505. - PubMed
    8. Xiong H., Zhou D., Zheng X., Zheng Y., Qi Y., Wang Y., Jing X., Huang Y. Chem. Commun. 2017;53:3422–3425. - PubMed
    9. Zhang K., Shen Y., Liu J., Spingler B., Duttwyler S. Chem. Commun. 2018;54:1698–1701. - PubMed