Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 6;10(15):4185-4191.
doi: 10.1039/c8sc05563g. eCollection 2019 Apr 21.

Anisotropic strain release in a thermosalient crystal: correlation between the microscopic orientation of molecular rearrangements and the macroscopic mechanical motion

Affiliations

Anisotropic strain release in a thermosalient crystal: correlation between the microscopic orientation of molecular rearrangements and the macroscopic mechanical motion

Tomohiro Seki et al. Chem Sci. .

Abstract

The salient effect, which refers to a jumping phenomenon of organic and organometallic molecular crystals typically triggered by phase transitions in response to external stimuli, has been investigated intensively in the last five years. A challenging topic in this research area is the question of how to characterize the release of microscopic strain accumulated during phase transitions, which generates macroscopic mechanical motion. Herein, we describe the thermosalient effect of the triphenylethenyl gold 4-chlorophenyl isocyanide complex 1, which jumps reversibly at approximately -100 °C upon cooling at 50 °C min-1 and heating at 30 °C min-1. Single-crystal X-ray diffraction measurements and differential scanning calorimetric analyses of 1 suggest the occurrence of a thermal phase transition at this temperature. Detailed structural analyses indicate that anisotropic changes to the molecular arrangement occur in 1, whereby the crystallographic a axis contracts upon cooling while the b axis expands. Simultaneously, macroscopic changes of the crystal dimensions occur. This is observed as bending, i.e., as an inclination of the crystal edges, and in the form of splitting, which occurs in a perpendicular direction to the major crystal axis. This study thus bridges the gap between macroscopic mechanical responses that are observed in high-speed photographic images and microscopic changes of the crystal structure, which are evaluated by X-ray diffraction measurements with face indexing.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Chemical structure of 1 and schematic representation of the salient effect. Colored arrows indicate the crystallographic axes of crystals of 1.
Fig. 2
Fig. 2. Photographs of 1 upon cooling (50 °C min–1), derived from a movie using a high-speed camera (2000 fps). The approximate temperature is –100 °C.
Fig. 3
Fig. 3. Photographs that show jumping, bending, and splitting as typical mechanical responses of crystals of 1 upon cooling.
Fig. 4
Fig. 4. Single-crystal structure of 1a measured at 25 °C with thermal ellipsoids at 50% probability. (a) A monomer unit, (b) a dimer unit, and (c) an extended molecular chain segment. H atoms are omitted for clarity in (b) and (c).
Fig. 5
Fig. 5. Comparison of the crystal structures of 1a at 25 °C (a) and 1b at –150 °C (b) with thermal ellipsoids at 50% probability. In the bottom figures, H atoms are omitted for clarity.
Fig. 6
Fig. 6. Juxtaposition of the crystal structures of 1a (red; 25 °C) and 1b (light blue; –150 °C). (a) Comparison of the monomer conformations. (b) Comparison of the molecular packing viewed along the c axis. Black dotted arrows indicate how molecules rearrange upon cooling (25 °C → –150 °C).
Fig. 7
Fig. 7. Changes of the length of the crystallographic a (a) and b (b) axes of the single crystals of 1 upon temperature changes.
Fig. 8
Fig. 8. DSC traces for crystals of 1 at cooling/heating rates of 5 °C min–1.
Fig. 9
Fig. 9. The results of the face index experiment for 1a. Scale bar = 0.5 mm.
Fig. 10
Fig. 10. Schematic representation of the macroscopic behavior of crystals of 1 upon cooling, revealing the mechanism for splitting and bending.

References

    1. Kitagawa D., Nishi H., Kobatake S. Angew. Chem., Int. Ed. 2013;52:9320–9322. - PubMed
    2. Kitagawa D., Kawasaki K., Tanaka R., Kobatake S. Chem. Mater. 2017;29:7524–7532.
    3. Kitagawa D., Tsujioka H., Tong F., Dong X., Bardeen C. J., Kobatake S. J. Am. Chem. Soc. 2018;140:4208–4212. - PubMed
    1. Taniguchi T., Sugiyama H., Uekusa H., Shiro M., Asahi T., Koshima H. Nat. Commun. 2018;9:538. - PMC - PubMed
    1. Nath N. K., Panda M. K., Sahoo S. C., Naumov P. CrystEngComm. 2014;16:1850–1858.
    2. Naumov P., Chizhik S., Panda M. K., Nath N. K., Boldyreva E. Chem. Rev. 2015;115:12440–12490. - PubMed
    3. Commins P., Desta I. T., Karothu D. P., Panda M. K., Naumov P. Chem. Commun. 2016;52:13941–13954. - PubMed
    1. Sahoo S. C., Sinha S. B., Kiran M. S., Ramamurty U., Dericioglu A. F., Reddy C. M., Naumov P. J. Am. Chem. Soc. 2013;135:13843–13850. - PubMed
    2. Sahoo S. C., Panda M. K., Nath N. K., Naumov P. J. Am. Chem. Soc. 2013;135:12241–12251. - PubMed
    3. Chandra Sahoo S., Nath N. K., Zhang L., Semreen M. H., Al-Tel T. H., Naumov P. RSC Adv. 2014;4:7640–7647.
    4. Panda M. K., Runcevski T., Chandra Sahoo S., Belik A. A., Nath N. K., Dinnebier R. E., Naumov P. Nat. Commun. 2014;5:4811. - PubMed
    5. Panda M. K., Runcevski T., Husain A., Dinnebier R. E., Naumov P. J. Am. Chem. Soc. 2015;137:1895–1902. - PubMed
    6. Nauha E., Naumov P., Lusi M. CrystEngComm. 2016;18:4699–4703.
    7. Panda M. K., Centore R., Causa M., Tuzi A., Borbone F., Naumov P. Sci. Rep. 2016;6:29610. - PMC - PubMed
    8. Takeda T., Akutagawa T. Chem.–Eur. J. 2016;22:7763–7770. - PubMed
    9. Karothu D. P., Weston J., Desta I. T., Naumov P. J. Am. Chem. Soc. 2016;138:13298–13306. - PubMed
    10. Khalil A., Ahmed E., Naumov P. Chem. Commun. 2017;53:8470–8473. - PubMed
    11. Mittapalli S., Sravanakumar Perumalla D., Nangia A. IUCrJ. 2017;4:243–250. - PMC - PubMed
    12. Lončarić I., Popović J., Despoja V., Burazer S., Grgičević I., Popović D., Skoko ž. Cryst. Growth Des. 2017;17:4445–4453.
    13. Shibuya Y., Itoh Y., Aida T. Chem.–Asian J. 2017;12:811–815. - PubMed
    14. Rawat H., Samanta R., Bhattacharya B., Deolka S., Dutta A., Dey S., Raju K. B., Reddy C. M. Cryst. Growth Des. 2018;18:2918–2923.
    15. Alimi L. O., van Heerden D. P., Lama P., Smith V. J., Barbour L. J. Chem. Commun. 2018;54:6208–6211. - PubMed
    1. Naumov P., Sahoo S. C., Zakharov B. A., Boldyreva E. V. Angew. Chem., Int. Ed. 2013;52:9990–9995. - PubMed
    2. Medishetty R., Husain A., Bai Z., Runcevski T., Dinnebier R. E., Naumov P., Vittal J. J. Angew. Chem., Int. Ed. 2014;53:5907–5911. - PubMed
    3. Medishetty R., Sahoo S. C., Mulijanto C. E., Naumov P., Vittal J. J. Chem. Mater. 2015;27:1821–1829.
    4. Commins P., Natarajan A., Tsai C.-K., Khan S. I., Nath N. K., Naumov P., Garcia-Garibay M. A. Cryst. Growth Des. 2015;15:1983–1990.
    5. Seki T., Sakurada K., Muromoto M., Ito H. Chem. Sci. 2015;6:1491–1497. - PMC - PubMed
    6. Mishra M. K., Mukherjee A., Ramamurty U., Desiraju G. R. IUCrJ. 2015;2:653–660. - PMC - PubMed
    7. Hatano E., Morimoto M., Hyodo K., Yasuda N., Yokojima S., Nakamura S., Uchida K. Chem.–Eur. J. 2016;22:12680–12683. - PubMed
    8. Mulijanto C. E., Quah H. S., Tan G. K., Donnadieu B., Vittal J. J. IUCrJ. 2017;4:65–71. - PMC - PubMed
    9. Hatano E., Morimoto M., Imai T., Hyodo K., Fujimoto A., Nishimura R., Sekine A., Yasuda N., Yokojima S., Nakamura S., Uchida K. Angew. Chem., Int. Ed. 2017;56:12576–12580. - PubMed