Donor-acceptor-stabilised germanium analogues of acid chloride, ester, and acyl pyrrole compounds: synthesis and reactivity
- PMID: 31057767
- PMCID: PMC6472437
- DOI: 10.1039/c8sc05380d
Donor-acceptor-stabilised germanium analogues of acid chloride, ester, and acyl pyrrole compounds: synthesis and reactivity
Abstract
Germaacid chloride, germaester, and N-germaacyl pyrrole compounds were not known previously. Therefore, donor-acceptor-stabilised germaacid chloride (i-Bu)2ATIGe(O)(Cl) → B(C6F5)3 (1), germaester (i-Bu)2ATIGe(O)(OSiPh3) → B(C6F5)3 (2), and N-germaacyl pyrrole (i-Bu)2ATIGe(O)(NC4H4) → B(C6F5)3 (3) compounds, with Cl-Ge[double bond, length as m-dash]O, Ph3SiO-Ge[double bond, length as m-dash]O, and C4H4N-Ge[double bond, length as m-dash]O moieties, respectively, are reported here. Germaacid chloride 1 reacts with PhCCLi, KOt-Bu, and RLi (R = Ph, Me) to afford donor-acceptor-stabilised germaynone (i-Bu)2ATIGe(O)(CCPh) → B(C6F5)3 (4), germaester (i-Bu)2ATIGe(O)(Ot-Bu) → B(C6F5)3 (5), and germanone (i-Bu)2ATIGe(O)(R) → B(C6F5)3 (R = Ph 6, Me 7) compounds, respectively. Interconversion between a germaester and a germaacid chloride is achieved; reaction of germaesters 2 and 5 with TMSCl gave germaacid chloride 1, and 1 reacted with Ph3SiOLi and KOt-Bu to produce germaesters 2 and 5. Reaction of N-germaacyl pyrrole 3 with thiophenol produced a donor-acceptor-stabilised germaacyl thioester (i-Bu)2ATIGe(O)(SPh) → B(C6F5)3 (10). Furthermore, the attempted syntheses of germaamides and germacarboxylic acids are also discussed.
This journal is © The Royal Society of Chemistry 2019.
Figures















References
-
-
and references cited therein;
- Xiong Y., Yao S., Driess M. Angew. Chem., Int. Ed. 2013;52:4302. - PubMed
- Asay M., Jones C., Driess M. Chem. Rev. 2011;111:354. - PubMed
- Fischer C. R., Power P. P. Chem. Rev. 2010;110:3877. - PubMed
- Mizuhata Y., Sasamori T., Tokitoh N. Chem. Rev. 2009;109:3479. - PubMed
- Nagendran S., Roesky H. W. Organometallics. 2008;27:457.
- Okazaki R., Tokitoh N. Acc. Chem. Res. 2000;33:625. - PubMed
- Power P. P. Chem. Rev. 1999;99:3463. - PubMed
- Barrau J., Rima G. Coord. Chem. Rev. 1998;178–180:593.
-
-
- Bonnefille E., Mazières S., Bibal C., Saffon N., Gornitzka H., Couret C. Eur. J. Inorg. Chem. 2008:4242.
- Pu L., Hardman N. J., Power P. P. Organometallics. 2001;20:5105.
- Veith M., Rammo A. Z. Anorg. Allg. Chem. 1997;623:861.
- Jutzi P., Schmidt H., Neumann B., Stammler H.-G. Organometallics. 1996;15:741.
- Tokitoh N., Matsumoto T., Okazaki R. Chem. Lett. 1995:1087.
-
- Wegner G. L., Berger R. J. F., Schier A., Schmidbaur H. Organometallics. 2001;20:418.
-
- Tacke R., Kobelt C., Baus J. A., Bertermann R., Burschka C. Dalton Trans. 2015;44:14959. - PubMed
- Junold K., Nutz M., Baus J. A., Burschka C., Fonseca Guerra C., Bickelhaupt F. M., Tacke R. Chem.–Eur. J. 2014;20:9319. - PubMed
- Azhakar R., Ghadwal R. S., Roesky H. W., Wolf H., Stalke D. Chem. Commun. 2012;48:4561. - PubMed
- Jana A., Azhakar R., Sarish S. P., Samuel P. P., Roesky H. W., Schulzke C., Koley D. Eur. J. Inorg. Chem. 2011:5006.
- Sen S. S., Tavčar G., Roesky H. W., Kratzert D., Hey J., Stalke D. Organometallics. 2010;29:2343.
-
- Ellis D., Hitchcock P. B., Lappert M. F. J. Chem. Soc., Dalton Trans. 1992:3397.
- Wang H., Xie Z. Eur. J. Inorg. Chem. 2017:4430.
LinkOut - more resources
Full Text Sources