Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun;31(25):e1807450.
doi: 10.1002/adma.201807450. Epub 2019 May 6.

Integration of Electrochemical Microsupercapacitors with Thin Film Electronics for On-Chip Energy Storage

Affiliations

Integration of Electrochemical Microsupercapacitors with Thin Film Electronics for On-Chip Energy Storage

Mrinal K Hota et al. Adv Mater. 2019 Jun.

Abstract

The development of self-powered electronic systems requires integration of on-chip energy-storage units to interface with various types of energy harvesters, which are intermittent by nature. Most studies have involved on-chip electrochemical microsupercapacitors that have been interfaced with energy harvesters through bulky Si-based rectifiers that are difficult to integrate. This study demonstrates transistor-level integration of electrochemical microsupercapacitors and thin film transistor rectifiers. In this approach, the thin film transistors, thin film rectifiers, and electrochemical microsupercapacitors share the same electrode material for all, which allows for a highly integrated electrochemical on-chip storage solution. The thin film rectifiers are shown to be capable of rectifying AC signal input from either triboelectric nanogenerators or standard function generators. In addition, electrochemical microsupercapacitors exhibit exceptionally slow self-discharge rate (≈18.75 mV h-1 ) and sufficient power to drive various electronic devices. This study opens a new avenue for developing compact on-chip electrochemical micropower units integrated with thin film electronics.

Keywords: RuO2; microsupercapacitors; on-chip energy storage; thin film rectifiers; thin film transistors.

PubMed Disclaimer

LinkOut - more resources