Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul;14(7):679-683.
doi: 10.1038/s41565-019-0442-x. Epub 2019 May 6.

Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators

Affiliations

Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators

Ruggero Verre et al. Nat Nanotechnol. 2019 Jul.

Abstract

Monolayer transition metal dichalcogenides (TMDCs) have recently been proposed as an excitonic platform for advanced optical and electronic functionalities1-3. However, in spite of intense research efforts, it has not been widely appreciated that TMDCs also possess a high refractive index4,5. This characteristic opens up the possibility to utilize them to construct resonant nanoantennas based on subwavelength geometrical modes6,7. Here, we show that nanodisks, fabricated from exfoliated multilayer WS2, support distinct Mie resonances and anapole states8 that can be tuned in wavelength over the visible and near-infrared range by varying the nanodisk size and aspect ratio. As a proof of concept, we demonstrate a novel regime of light-matter interaction-anapole-exciton polaritons-which we realize within a single WS2 nanodisk. We argue that the TMDC material anisotropy and the presence of excitons enrich traditional nanophotonics approaches based on conventional high-index materials and/or plasmonics.

PubMed Disclaimer

LinkOut - more resources