Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019;66(1.2):35-37.
doi: 10.2152/jmi.66.35.

Standardization of imaging features for radiomics analysis

Affiliations
Free article

Standardization of imaging features for radiomics analysis

Akihiro Haga et al. J Med Invest. 2019.
Free article

Abstract

Radiomics has the potential to provide tumor characteristics with noninvasive and repeatable way. The purpose of this paper is to evaluate the standardization effect of imaging features for radiomics analysis. For this purpose, we prepared two CT databases ; one includes 40 non-small cell lung cancer (NSCLC) patients for whom tumor biopsies was performed before stereotactic body radiation therapy in The University of Tokyo Hospital, and the other includes 29 early-stage NSCLC datasets from the Cancer Imaging Archive. The former was used as the training data, whereas the later was used as the test data in the evaluation of the prediction model. In total, 476 imaging features were extracted from each data. Then, both training and test data were standardized as the min-max normalization, the z-score normalization, and the whitening from the principle component analysis. All of standardization strategies improved the accuracy for the histology prediction. The area under the receiver observed characteristics curve was 0.725, 0.789, and 0.785 in above standardizations, respectively. Radiomics analysis has shown that robust features have a high prognostic power in predicting early-stage NSCLC histology subtypes. The performance was able to be improved by standardizing the data in the feature space. J. Med. Invest. 66 : 35-37, February, 2019.

Keywords: Histology prediction; Machine learning; Quantitative imaging; Radiomics; Standardization.

PubMed Disclaimer

MeSH terms