Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 8;6(5):e12617.
doi: 10.2196/12617.

Association Between Improvement in Baseline Mood and Long-Term Use of a Mindfulness and Meditation App: Observational Study

Affiliations

Association Between Improvement in Baseline Mood and Long-Term Use of a Mindfulness and Meditation App: Observational Study

Argus J Athanas et al. JMIR Ment Health. .

Erratum in

Abstract

Background: The use of smartphone apps to monitor and deliver health care guidance and interventions has received considerable attention recently, particularly with regard to behavioral disorders, stress relief, negative emotional state, and poor mood in general. Unfortunately, there is little research investigating the long-term and repeated effects of apps meant to impact mood and emotional state.

Objective: We aimed to investigate the effects of both immediate point-of-intervention and long-term use (ie, at least 10 engagements) of a guided meditation and mindfulness smartphone app on users' emotional states. Data were collected from users of a mobile phone app developed by the company Stop, Breathe & Think (SBT) for achieving emotional wellness. To explore the long-term effects, we assessed changes in the users' basal emotional state before they completed an activity (eg, a guided meditation). We also assessed the immediate effects of the app on users' emotional states from preactivity to postactivity.

Methods: The SBT app collects information on the emotional state of the user before and after engagement in one or several mediation and mindfulness activities. These activities are recommended and provided by the app based on user input. We considered data on over 120,000 users of the app who collectively engaged in over 5.5 million sessions with the app during an approximate 2-year period. We focused our analysis on users who had at least 10 engagements with the app over an average of 6 months. We explored the changes in the emotional well-being of individuals with different emotional states at the time of their initial engagement with the app using mixed-effects models. In the process, we compared 2 different methods of classifying emotional states: (1) an expert-defined a priori mood classification and (2) an empirically driven cluster-based classification.

Results: We found that among long-term users of the app, there was an association between the length of use and a positive change in basal emotional state (4% positive mood increase on a 2-point scale every 10 sessions). We also found that individuals who were anxious or depressed tended to have a favorable long-term emotional transition (eg, from a sad emotional state to a happier emotional state) after using the app for an extended period (the odds ratio for achieving a positive emotional state was 3.2 and 6.2 for anxious and depressed individuals, respectively, compared with users with fewer sessions).

Conclusions: Our analyses provide evidence for an association between both immediate and long-term use of an app providing guided meditations and improvements in the emotional state.

Keywords: emotional well-being; mental health; mindfulness; smartphone.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: Within Stop Breathe & Think, SS and NJS are advisory consultants, JP and JC are cofounders, and JG is an employee. SS, NJS, JP, JC, and JG all hold equity in Stop Breathe & Think.

Figures

Figure 1
Figure 1
Stop, Breathe & Think user interface and stages of interaction with the app. Users are provided several ways in which they can record their current emotional state both pre- and postactivity. These emotional check-ins are optional, but the intuitive and simple selection process makes it easy for most users to enter at least some emotional status information.
Figure 2
Figure 2
Average emotional score versus cluster centroid distances correlation matrix represented as a heat map. As an example for interpreting the numbers in the matrix, a −0.90 correlation between the preactivity emotion score (x-axis Average Pre Emo Score label) and positivity cluster (y-axis Dist positivity label) shows that users who score higher on the preactivity emotional score had a shorter distance of their selected emotions to the centroid of the positive emotion cluster. Note that labels with Dist reflect distance measures derived from the cluster analyses (eg, Dist Anxiety reflects the distance of a user’s emotional score from the anxiety cluster mean) and Emo reflects a specified emotional cluster.
Figure 3
Figure 3
Emotion clustering using both pre- and postactivity emotion endorsements. The points in the plot reflect positions in the first 2 principal components defined by the Bray-Curtis distance between each pre- and postactivity emotional selection. The 8 circular clusters encompassing the emotions were defined by a permutation around medoids analysis technique, in which 8 clusters maximized the average cluster silhouette scores. Cluster boundaries are drawn on the smallest region including all underlying emotions. Emotions are labeled by clinical association such that terms clinically associated with anger are in red and pink, depression in blue, anxiety in purple, and happiness in green.
Figure 4
Figure 4
Linear mixed-effects regression coefficient estimates, their SEs, and P values (<.001***, <.01**, and <.05*) for models with the preactivity emotional state as the dependent variable. Analyses with the emotion scoring method as the dependent variable are on the left panels and analyses using distances from clustering as the dependent variable are on the right panels. Generalized Linear Model logit regression models were used with a binary dependent variable indicating if the emotion terms endorsed at a session reflected anxiety (middle panels) or reflected depression (bottom panels).
Figure 5
Figure 5
Linear mixed-effects regression coefficient estimates, their SEs and P values (<.001***, <.01**, and <.05*) for models with pre- to postactivity change in the emotional state as the dependent variable. An analysis with the standardized change in emotion score pre- to postactivity as the dependent variable is reflected in the top panel, and proximity to the positive emotional clusters as the dependent variable is reflected in the bottom panel.

References

    1. GBD 2016 DALYsHALE Collaborators Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017 Sep 16;390(10100):1260–344. doi: 10.1016/S0140-6736(17)32130-X. https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(17)32130-X S0140-6736(17)32130-X - DOI - PMC - PubMed
    1. Asherson P, Kosmas C, Patel C, Doll H, Joseph A. Health-related quality of life and work productivity of adults with ADHD: a UK web-based survey. Eur Psychiatry. 2017 Apr 14;41:S352. doi: 10.1016/j.eurpsy.2017.02.332. - DOI - PMC - PubMed
    1. Aitken LM, Burmeister E, McKinley S, Alison J, King M, Leslie G, Elliott D. Physical recovery in intensive care unit survivors: a cohort analysis. Am J Crit Care. 2014 Dec 31;24(1):33–40. doi: 10.4037/ajcc2015870. - DOI - PubMed
    1. Goetzel RZ, Hawkins K, Ozminkowski RJ, Wang S. The health and productivity cost burden of the "top 10" physical and mental health conditions affecting six large U.S. employers in 1999. J Occup Environ Med. 2003 Jan;45(1):5–14. doi: 10.1097/00043764-200301000-00007. - DOI - PubMed
    1. Musiat P, Tarrier N. Collateral outcomes in e-mental health: a systematic review of the evidence for added benefits of computerized cognitive behavior therapy interventions for mental health. Psychol Med. 2014 Nov;44(15):3137–50. doi: 10.1017/S0033291714000245.S0033291714000245 - DOI - PubMed

LinkOut - more resources