Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 7;27(6):1712-1725.e6.
doi: 10.1016/j.celrep.2019.04.045.

Linking YAP to Müller Glia Quiescence Exit in the Degenerative Retina

Affiliations
Free article

Linking YAP to Müller Glia Quiescence Exit in the Degenerative Retina

Annaïg Hamon et al. Cell Rep. .
Free article

Abstract

Contrasting with fish or amphibian, retinal regeneration from Müller glia is largely limited in mammals. In our quest toward the identification of molecular cues that may boost their stemness potential, we investigated the involvement of the Hippo pathway effector YAP (Yes-associated protein), which is upregulated in Müller cells following retinal injury. Conditional Yap deletion in mouse Müller cells prevents cell-cycle gene upregulation that normally accompanies reactive gliosis upon photoreceptor cell death. We further show that, in Xenopus, a species endowed with efficient regenerative capacity, YAP is required for their injury-dependent proliferative response. In the mouse retina, where Müller cells do not spontaneously proliferate, YAP overactivation is sufficient to induce their reprogramming into highly proliferative cells. Overall, we unravel a pivotal role for YAP in tuning Müller cell proliferative response to injury and highlight a YAP-EGFR (epidermal growth factor receptor) axis by which Müller cells exit their quiescence state, a critical step toward regeneration.

Keywords: EGFR pathway; Hippo/YAP pathway; Müller cells; reactive gliosis; retinal regeneration.

PubMed Disclaimer

Publication types

MeSH terms