Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Aug:200:179-189.
doi: 10.1016/j.pharmthera.2019.05.004. Epub 2019 May 8.

Primary aromatic amines and cancer: Novel mechanistic insights using 4-aminobiphenyl as a model carcinogen

Affiliations
Review

Primary aromatic amines and cancer: Novel mechanistic insights using 4-aminobiphenyl as a model carcinogen

Shuang Wang et al. Pharmacol Ther. 2019 Aug.

Abstract

Aromatic amines are an important class of human carcinogens found ubiquitously in our environment. It is estimated that 1 in 8 of all known or suspected human carcinogens is or can be converted into an aromatic amine, making the elucidation of their mechanisms of toxicity a top public health priority. Decades of research into aromatic amine carcinogenesis revealed a complex bioactivation process where Phase I and Phase II drug metabolizing enzymes catalyze N-oxidation and subsequent conjugation reactions generating the highly electrophilic nitrenium intermediate that reacts with and forms adducts on cellular macromolecules. Although aromatic amine-DNA adducts were believed to be the main driver of cancer formation, several studies have reported a lack of correlation between levels of DNA adducts and tumors. Using genetically modified mouse models, our laboratory and others observed several instances where levels of conventionally measured DNA adducts failed to correlate with liver tumor incidence following exposure to the model aromatic amine procarcinogen 4-aminobiphenyl. In this review we first provide a historical overview of the studies that led to a proposed mechanism of carcinogenesis caused by aromatic amines, where their bioactivation to form DNA adducts represents the central driver of this process. We then highlight recent mechanistic studies using 4-aminobiphenyl that are inconsistent with this mechanism which suggest novel drivers of aromatic amine carcinogenesis.

Keywords: Arylamine N-acetyltransferases; Bioactivation; Chemical carcinogenesis; Cytochrome P450; Oxidative stress.

PubMed Disclaimer

Publication types

Grants and funding

LinkOut - more resources