Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May 9;20(9):2293.
doi: 10.3390/ijms20092293.

Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration

Affiliations
Review

Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration

Carla Ribeiro Alvares Batista et al. Int J Mol Sci. .

Abstract

A large body of experimental evidence suggests that neuroinflammation is a key pathological event triggering and perpetuating the neurodegenerative process associated with many neurological diseases. Therefore, different stimuli, such as lipopolysaccharide (LPS), are used to model neuroinflammation associated with neurodegeneration. By acting at its receptors, LPS activates various intracellular molecules, which alter the expression of a plethora of inflammatory mediators. These factors, in turn, initiate or contribute to the development of neurodegenerative processes. Therefore, LPS is an important tool for the study of neuroinflammation associated with neurodegenerative diseases. However, the serotype, route of administration, and number of injections of this toxin induce varied pathological responses. Thus, here, we review the use of LPS in various models of neurodegeneration as well as discuss the neuroinflammatory mechanisms induced by this toxin that could underpin the pathological events linked to the neurodegenerative process.

Keywords: Alzheimer’s disease; Huntington’s disease; Parkinson’s disease; amyotrophic lateral sclerosis; inflammation; lipopolysaccharide; neurodegeneration.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Ransohoff R.M. How neuroinflammation contributes to neurodegeneration. Science. 2016;353:777–783. doi: 10.1126/science.aag2590. - DOI - PubMed
    1. Boonen B., Alpizar Y.A., Sanchez A., Lopez-Requena A., Voets T., Talavera K. Differential effects of lipopolysaccharide on mouse sensory TRP channels. Cell Calcium. 2018;73:72–81. doi: 10.1016/j.ceca.2018.04.004. - DOI - PubMed
    1. Alpizar Y.A., Boonen B., Sanchez A., Jung C., Lopez-Requena A., Naert R., Steelant B., Luyts K., Plata C., De Vooght V., et al. TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells. Nat. Commun. 2017;8:1059. doi: 10.1038/s41467-017-01201-3. - DOI - PMC - PubMed
    1. Meseguer V., Alpizar Y.A., Luis E., Tajada S., Denlinger B., Fajardo O., Manenschijn J.A., Fernandez-Pena C., Talavera A., Kichko T., et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 2014;5:3125. doi: 10.1038/ncomms4125. - DOI - PMC - PubMed
    1. Fitzgerald K.A., McWhirter S.M., Faia K.L., Rowe D.C., Latz E., Golenbock D.T., Coyle A.J., Liao S.M., Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 2003;4:491–496. doi: 10.1038/ni921. - DOI - PubMed

Substances

LinkOut - more resources