Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 10;11(1):43.
doi: 10.1186/s13195-019-0494-z.

Olfactory function is associated with cognitive performance: results from the population-based LIFE-Adult-Study

Affiliations

Olfactory function is associated with cognitive performance: results from the population-based LIFE-Adult-Study

Maryam Yahiaoui-Doktor et al. Alzheimers Res Ther. .

Abstract

Background: Studies in older adults or those with cognitive impairment have shown associations between cognitive and olfactory performance, but there are few population-based studies especially in younger adults. We therefore cross-sectionally analyzed this association using data from the population-based LIFE-Adult-Study.

Methods: Cognitive assessments comprised tests from the Consortium to Establish a Registry for Alzheimer's Disease (CERAD): verbal fluency (VF), word list learning and recall (WLL, WLR), and the Trail Making Tests (TMT) A and B. The "Sniffin' Sticks Screening 12" test was used to measure olfactory performance. Linear regression analyses were performed to determine associations between the number of correctly identified odors (0 to 12) and the five cognitive test scores, adjusted for sex, age, education, and the presence of depressive symptoms. Receiver operating characteristic (ROC) analysis was carried out to determine the discriminative performance of the number of correctly identified odors regarding identification of cognition impairment.

Results: A total of 6783 participants (51.3% female) completed the olfaction test and the VF test and TMT. A subgroup of 2227 participants (46.9% female) also completed the WLL and WLR tests. Based on age-, sex-, and education-specific norms from CERAD, the following numbers of participants were considered cognitively impaired: VF 759 (11.2%), WLL 242 (10.9%), WLR: 132 (5.9%), TMT-A 415 (6.1%), and TMT-B/A ratio 677 (10.0%). On average, score values for VF were higher by 0.42 points (p < 0.001), for WLL higher by 0.32 points (p = 0.001), for WLR higher by 0.31 points (p = 0.002), for TMT-A lower by 0.25 points (p < 0.001), and for TMT-B/A ratio lower by 0.01 points (p < 0.001) per number of correctly identified odors. ROC analysis revealed area under the curve values from 0.55 to 0.62 for the five cognitive tests.

Conclusions: Better olfactory performance was associated with better cognitive performance in all five tests in adults - adjusted for age, sex, education, and the presence of depressive symptoms. However, the ability of the smell test to discriminate between individuals with and without cognitive impairment was limited. The value of olfactory testing in early screening for cognitive impairment should be investigated in longitudinal studies.

Keywords: Cognition; Cross-sectional; General population; Olfactory function.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the ethics committee at the Medical Faculty of the University of Leipzig and complies with the ethical standards of the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Association of olfactory performance and cognitive performance

References

    1. Marigliano V, Gualdi G, Servello A, Marigliano B, Volpe LD, Fioretti A, et al. Olfactory deficit and hippocampal volume loss for early diagnosis of Alzheimer disease: a pilot study. Alzheimer Dis Assoc Disord. 2014;28(2):194–197. doi: 10.1097/WAD.0b013e31827bdb9f. - DOI - PubMed
    1. Growdon ME, Schultz AP, Dagley AS, Amariglio RE, Hedden T, Rentz DM, et al. Odor identification and Alzheimer disease biomarkers in clinically normal elderly. Neurology. 2015;84(21):2153–2160. doi: 10.1212/WNL.0000000000001614. - DOI - PMC - PubMed
    1. Maurage P, Callot C, Chang B, Philippot P, Rombaux P, de Timary P. Olfactory impairment is correlated with confabulation in alcoholism: towards a multimodal testing of orbitofrontal cortex. PLoS One. 2011;6(8):e23190. doi: 10.1371/journal.pone.0023190. - DOI - PMC - PubMed
    1. Rupp CI, Fleischhacker WW, Drexler A, Hausmann A, Hinterhuber H, Kurz M. Executive function and memory in relation to olfactory deficits in alcohol-dependent patients. Alcohol Clin Exp Res. 2006;30(8):1355–1362. doi: 10.1111/j.1530-0277.2006.00162.x. - DOI - PubMed
    1. Seligman SC, Kamath V, Giovannetti T, Arnold SE, Moberg PJ. Olfaction and apathy in Alzheimer’s disease, mild cognitive impairment, and healthy older adults. Aging Ment Health. 2013;17(5):564–570. doi: 10.1080/13607863.2013.768208. - DOI - PMC - PubMed

Publication types