Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987:126:221-38.
doi: 10.1002/9780470513422.ch14.

Discovery and partial characterization of primate motor-system toxins

Discovery and partial characterization of primate motor-system toxins

P S Spencer et al. Ciba Found Symp. 1987.

Abstract

beta-N-Oxalylamino-L-alanine (BOAA) and beta-N-methylamino-L-alanine (BMAA) are chemically related excitant amino acids isolated from the seed of Lathyrus sativus (BOAA) and Cycas circinalis (BMAA), consumption of which has been linked to lathyrism (an upper motor neuron disorder) and Guam amyotrophic lateral sclerosis (ALS), respectively. Both diseases are associated with degeneration of motor neurons. Experimentally, single doses of BOAA or BMAA induce seizures in neonatal mice and postsynaptic neuronal oedema and degeneration in explants of mouse spinal cord and frontal cortex. Preliminary studies show that these behavioural and pathological effects are differentially blocked by glutamate-receptor antagonists. In macaques, several weeks of daily oral doses of BOAA produce clinical and electrophysiological signs of corticospinal dysfunction identical to those seen in comparably well-nourished animals receiving a fortified diet based on seed of Lathyrus sativus. By contrast, comparable oral dosing with BMAA precipitates tremor and weakness, bradykinesia and behavioural changes, with conduction deficits in the principal motor pathway. BOAA and BMAA (or a metabolite thereof) are the first members of the excitotoxin family to have been shown to possess chronic motor-system toxic potential. These observations provide a rational basis for searching for comparable endogenous neurotoxins in sporadic and inherited forms of human motor neuron disease.

PubMed Disclaimer

Publication types

LinkOut - more resources