Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun:161:34-45.
doi: 10.1016/j.biochi.2018.10.015. Epub 2018 Oct 25.

The 5-HT1A receptor: Signaling to behavior

Affiliations
Review

The 5-HT1A receptor: Signaling to behavior

Paul R Albert et al. Biochimie. 2019 Jun.

Abstract

The 5-HT1A receptor is highly expressed both in 5-HT neurons as a presynaptic inhibitory autoreceptor, and in many brain regions innervated by 5-HT as a post-synaptic heteroreceptor. This review examines the signaling of 5-HT1A receptors to regulate 5-HT activity and behavior. Initial findings in heterologous cell systems, neuronal cell lines, neurons, and in vivo show that the 5-HT1A receptor is a Gi/o-coupled receptor that signals to the canonical pathway of inhibition of adenylyl cyclase (AC). However, new neuron-specific pathways and their roles in neuronal function have been uncovered. 5-HT1A receptor coupling via Gβγ subunits reduces neuronal activity by opening potassium channels and closing calcium channels. However, the receptor coupled primarily to Gi3 in 5-HT neurons and Gi2 in hippocampal neurons, which may underlie differential signaling and desensitization in these cells. While in 5-HT neurons, the 5-HT1A receptor appears to inhibit extracellular regulated protein kinase (ERK) ERK1/2 activity, it signals to activate it in developing and adult hippocampal neurons, and may play roles in synaptogenesis. Recent studies implicate 5-HT1A signaling through Gβγ and tyrosine kinase receptors to activate ACII, phospholipase C (PLC)/protein kinase C (PKC), calcium-calmodulin-dependent protein kinase II (CAMKII), and phosphatidyl inositol 3'-kinase (PI3K)/Akt signaling mediating synaptogenesis, cell survival, and behavioral actions of antidepressants. Thus, the 5-HT1A receptor appears to modify its signaling repertoire depending on the cell type (5-HT vs. post-synaptic neurons) and the developmental state of the neuron. Enhancement of cell specific signaling of the 5-HT1A receptor may provide an amplification of the antidepressant actions of 5-HT1A receptor activation. In addition, in response to prolonged 5-HT elevation upon chronic antidepressant treatment, the 5-HT1A autoreceptor appears to desensitize more extensively than the heteroreceptor. The mechanisms of 5-HT1A receptor desensitization are discussed, highlighting the potential of enhancing autoreceptor desensitization to accelerate antidepressant response.

Keywords: Autoreceptor; Desensitization; G protein; Heteroreceptor; Raphe; Serotonin.

PubMed Disclaimer

LinkOut - more resources