Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar;32(2):631-636.

Antimicrobial potential of aqueous extract of Camellia sinensis against representative microbes

Affiliations
  • PMID: 31081776

Antimicrobial potential of aqueous extract of Camellia sinensis against representative microbes

Ishrat Khan et al. Pak J Pharm Sci. 2019 Mar.

Abstract

Camellia sinensis is being used for decades for its therapeutic efficacies against physiological problems and microbial infections. This study was undertaken to investigate the antibacterial and antifungal potential of aqueous extract of Camellia sinensis. Antibacterial activity was determined by disc and well diffusion assay. MIC and MBC were calculated by broth dilution method. Miles and Misra technique was used to find out colony forming unit per/ml. All the test organisms revealed a diverse range of vulnerability against aqueous extract. Among Gram positive, MRSA showed to be the most sensitive with least MIC and MBC while among Gram-negative Pseudomonas aeruginosa exhibited the highest sensitivity. In Miles and Misra, a progressive decline in log of CFU/ml was observed. In time-kill assay, a decline was noted in the viable count of S.aureus after exposure to 18% aqueous extract of Camellia sinensis. In the present study aqueous extract of Camellia sinensis found to be effective against Gram positive, Gram negative and fungi. The most important finding of this study is its aqueous extract inhibitory effect against drug-resistant microorganisms e.g. MRSA and P. aeruginosa and Candida albicans.

PubMed Disclaimer

MeSH terms

LinkOut - more resources