Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May 11;8(2):26.
doi: 10.3390/biology8020026.

Mitochondrial Dysfunction and the Aging Immune System

Affiliations
Review

Mitochondrial Dysfunction and the Aging Immune System

Peter J McGuire. Biology (Basel). .

Abstract

Mitochondria are ancient organelles that have co-evolved with their cellular hosts, developing a mutually beneficial arrangement. In addition to making energy, mitochondria are multifaceted, being involved in heat production, calcium storage, apoptosis, cell signaling, biosynthesis, and aging. Many of these mitochondrial functions decline with age, and are the basis for many diseases of aging. Despite the vast amount of research dedicated to this subject, the relationship between aging mitochondria and immune function is largely absent from the literature. In this review, three main issues facing the aging immune system are discussed: (1) inflamm-aging; (2) susceptibility to infection and (3) declining T-cell function. These issues are re-evaluated using the lens of mitochondrial dysfunction with aging. With the recent expansion of numerous profiling technologies, there has been a resurgence of interest in the role of metabolism in immunity, with mitochondria taking center stage. Building upon this recent accumulation of knowledge in immunometabolism, this review will advance the hypothesis that the decline in immunity and associated pathologies are partially related to the natural progression of mitochondrial dysfunction with aging.

Keywords: adaptive immunity; aging; immunosenescence; inflammation; innate immunity; mitochondria.

PubMed Disclaimer

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Mitochondrial damage associated molecular patterns (DAMPs). DAMPs derived from mitochondrial components may be released during cellular injury, apoptosis or necrosis. Once these mitochondrial components are released into the extracellular space, they can lead to the activation of innate and adaptive immune cells. The recognition of mitochondrial DAMPs involves toll-like receptors (TLR), formyl peptide receptors (FPR) and purigenic receptors (P2RX7). By binding their cognate ligands or by direct interaction (i.e., reactive oxygen species, ROS), intracellular signaling pathways such as NFkB and the NLRP3 inflammasome become activated resulting in a proinflammatory response. TLR4 = toll-like receptor 4, TLR9 = toll-like receptor 9, P2RX7 = purigenic receptor, FPR1 = formyl peptide receptor 1, NLRP3 = NLR Family Pyrin Domain Containing 3, fMet = N-formylmethionine, mtROS = mitochondrial reactive oxygen species, mtDNA = mitochondrial DNA, Tfam = transcription factor A, mitochondrial, RAGE = receptors for advanced glycation end-products, NFkB = nuclear factor kappa-light-chain-enhancer of activated B cells.
Figure 2
Figure 2
Mitochondrial antiviral response. The recognition of viral nucleic acids involves mitochondria and intact membrane potential (ψm). RIG-I and MDA5 recognize cytoplasmic viral nucleic acids, leading to the oligomerization of MAVS. MAVS then sets in motion a signaling pathway that eventually leads to the phosphorylation (*P) of IRF3/7 with subsequent induction of IFNα to offer antiviral cellular protection. RIG-I = retinoic acid inducible gene I, MDA5 = melanoma differentiation-associated protein 5, MAVS = mitochondrial antiviral-signaling protein, TRAFs = TNF receptor associated factors, TBK1 = TANK binding kinase 1, IKKε = inhibitor of nuclear factor kappa-B kinase subunit epsilon, IRF 3 = interferon response factor 3, IRF 7 = interferon response factor 7, INFα = interferon alpha.
Figure 3
Figure 3
T-cell activation and differentiation involved metabolic reprogramming. At rest, naïve T-cells primarily use OXPHOS to derive their energy. Following activation, T-cells switch to Warburg metabolism and glutaminolysis to support their proliferative needs. Differentiation into T-helper subsets can involve either the maintenance of the Warburg phenotype (i.e., Th17, Th1, Th2), or the reversion to OXPHOS with FAO (i.e., Treg, Tm) as an important fuel. FAO = mitochondrial fatty acid oxidation, OXPHOS = oxidative phosphorylation, Th17 = T-helper cell 17, Th1 = T-helper cell 1, Th2 = T-helper cell 2, Treg = regulatory T-cells, Tm = memory T-cells.

References

    1. Martin W.F., Garg S., Zimorski V. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015;370:20140330. doi: 10.1098/rstb.2014.0330. - DOI - PMC - PubMed
    1. Gray M.W. Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 2012;4:a011403. doi: 10.1101/cshperspect.a011403. - DOI - PMC - PubMed
    1. Vafai S.B., Mootha V.K. Mitochondrial disorders as windows into an ancient organelle. Nature. 2012;491:374–383. doi: 10.1038/nature11707. - DOI - PubMed
    1. Antico Arciuch V.G., Elguero M.E., Poderoso J.J., Carreras M.C. Mitochondrial regulation of cell cycle and proliferation. Antioxid. Redox Signal. 2012;16:1150–1180. doi: 10.1089/ars.2011.4085. - DOI - PMC - PubMed
    1. Quintana A., Schwindling C., Wenning A.S., Becherer U., Rettig J., Schwarz E.C., Hoth M. T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl. Acad. Sci. USA. 2007;104:14418–14423. doi: 10.1073/pnas.0703126104. - DOI - PMC - PubMed

LinkOut - more resources