Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May;37(5):298-304.
doi: 10.1089/photob.2018.4574. Epub 2019 Apr 12.

Analysis of Macrophage Activation Markers in an Experimental Model of Cutaneous Leishmaniasis Treated with Photodynamic Therapy Mediated by 5-Aminolevulinic Acid

Affiliations

Analysis of Macrophage Activation Markers in an Experimental Model of Cutaneous Leishmaniasis Treated with Photodynamic Therapy Mediated by 5-Aminolevulinic Acid

Mona Lisa Fabiana Silva et al. Photobiomodul Photomed Laser Surg. 2019 May.

Abstract

Objective: In this study, we evaluated the effectiveness of photodynamic therapy (PDT) for the treatment of experimental cutaneous leishmaniasis (CL) and the profile of macrophages activation markers. Background: Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania. CL is caused by Leishmania major in the old world and by Leishmania braziliensis in the Americas. Considering the targeted organs, PDT may constitute a valuable therapeutic intervention. Macrophages are the host cells of Leishmania in mammals and may be classified into type M1 or M2 depending on the pattern of activation. Methods: BALB/c mice were infected in the foot pad with 1 × 106 amastigotes of L. braziliensis and treated with 5-aminolevulinic acid (5-ALA), visible light, or 5-ALA-PDT. The ex vivo mRNA expression levels of interleukin-10, tumor necrosis factor-α (TNF-α), arginase-1, heme oxygenase ( Hmox), and induced nitric oxide synthase (iNOS) were quantities as markers of macrophage activation with distinct ability to kill intracellular parasite. Results: The parasite load decreased significantly in the group treated with PDT compared with the other groups. The iNOS relative mRNA was higher in the group treated with PDT and light only compared with the group without treatment, whereas iNOS/arginase ratio was significantly higher only in the PDT group. The expression of TNF-α was significantly higher in 5-ALA and light compared with PDT and control group. No significant difference was observed in the expression of the other markers evaluated. Conclusions: Both, light and 5-ALA-PDT were able to upregulate iNOS expression only; 5-ALA-PDT was able to reduce parasite burden. The increase in the iNOS levels suggests it might participate in the antimicrobial mechanisms triggered by 5-ALA-PDT; although parasite death mechanism was not completely clarified, the results presented in this study suggest that macrophage activation may contribute to parasite control.

Keywords: 5-aminolevulinic acid; ALA-PDT; macrophages; photodynamic therapy.

PubMed Disclaimer

LinkOut - more resources