Role of extracellular vesicles in stem cell biology
- PMID: 31091143
- PMCID: PMC6732418
- DOI: 10.1152/ajpcell.00129.2019
Role of extracellular vesicles in stem cell biology
Abstract
The extracellular vesicles (EVs) are membrane vesicles carrying proteins, nucleic acids, and bioactive lipids of the cell of origin. These vesicles released within the extracellular space and entering into the circulation may transfer their cargo to neighboring or distant cells and induce phenotypical and functional changes that may be relevant in several physiopathological conditions. In an attempt to define the biological properties of EVs, several investigations have focused on their cargo and on the effects elicited in recipient cells. EVs have been involved in modulation of tumor microenvironment and behavior, as well as in the immune and inflammatory response. In the present review, we address the paracrine action of EVs released by stem cells and their potential involvement in the activation of regenerative programs in injured cells.
Keywords: cancer cells; exosomes; immune cells; microvesicles; stem cells.
Conflict of interest statement
G. Camussi is a member of the Scientific Advisory Board of Unicyte AG. None of the other authors has any conflicts of interest, financial or otherwise, to disclose.
Figures

References
-
- Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res (Amst) 10: 301–312, 2013. doi:10.1016/j.scr.2013.01.002. - DOI - PubMed
-
- Ashiru O, Boutet P, Fernández-Messina L, Agüera-González S, Skepper JN, Valés-Gómez M, Reyburn HT. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res 70: 481–489, 2010. doi:10.1158/0008-5472.CAN-09-1688. - DOI - PMC - PubMed
-
- Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, Schmandt R, Lu KH, Mok SC. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun 7: 11150, 2016. doi:10.1038/ncomms11150. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical