Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 1;317(1):R190-R202.
doi: 10.1152/ajpregu.00065.2019. Epub 2019 May 15.

Regulation of breathing pattern by IL-10

Affiliations
Free article

Regulation of breathing pattern by IL-10

Charoula Eleni Giannakopoulou et al. Am J Physiol Regul Integr Comp Physiol. .
Free article

Abstract

Proinflammatory cytokines like interleukin-1β (IL-1β) affect the control of breathing. Our aim is to determine the effect of the anti-inflammatory cytokine IL-10 οn the control of breathing. IL-10 knockout mice (IL-10-/-, n = 10) and wild-type mice (IL-10+/+, n = 10) were exposed to the following test gases: hyperoxic hypercapnia 7% CO2-93% O2, normoxic hypercapnia 7% CO2-21% O2, hypoxic hypercapnia 7% CO2-10% O2, and hypoxic normocapnia 3% CO2-10% O2. The ventilatory function was assessed using whole body plethysmography. Recombinant mouse IL-10 (rIL-10; 10 μg/kg) was administered intraperitoneally to wild-type mice (n = 10) 30 min before the onset of gas challenge. IL-10 was administered in neonatal medullary slices (10-30 ng/ml, n = 8). We found that IL-10-/- mice exhibited consistently increased frequency and reduced tidal volume compared with IL-10+/+ mice during room air breathing and in all test gases (by 23.62 to 33.2%, P < 0.05 and -36.23 to -41.69%, P < 0.05, respectively). In all inspired gases, the minute ventilation of IL-10-/- mice was lower than IL-10+/+ (by -15.67 to -22.74%, P < 0.05). The rapid shallow breathing index was higher in IL-10-/- mice compared with IL-10+/+ mice in all inspired gases (by 50.25 to 57.5%, P < 0.05). The intraperitoneal injection of rIL-10 caused reduction of the respiratory rate and augmentation of the tidal volume in room air and also in all inspired gases (by -12.22 to -29.53 and 32.18 to 45.11%, P < 0.05, respectively). IL-10 administration in neonatal rat (n = 8) in vitro rhythmically active medullary slice preparations did not affect either rhythmicity or peak amplitude of hypoglossal nerve discharge. In conclusion, IL-10 may induce a slower and deeper pattern of breathing.

Keywords: control of breathing; interleukin-10; whole body plethysmography.

PubMed Disclaimer

Publication types

LinkOut - more resources