Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug;97(8):773-780.
doi: 10.1139/cjpp-2019-0056. Epub 2019 May 15.

Altered K+ current profiles underlie cardiac action potential shortening in hyperkalemia and β-adrenergic stimulation

Affiliations

Altered K+ current profiles underlie cardiac action potential shortening in hyperkalemia and β-adrenergic stimulation

Bence Hegyi et al. Can J Physiol Pharmacol. 2019 Aug.

Abstract

Hyperkalemia is known to develop in various conditions including vigorous physical exercise. In the heart, hyperkalemia is associated with action potential (AP) shortening that was attributed to altered gating of K+ channels. However, it remains unknown how hyperkalemia changes the profiles of each K+ current under a cardiac AP. Therefore, we recorded the major K+ currents (inward rectifier K+ current, IK1; rapid and slow delayed rectifier K+ currents, IKr and IKs, respectively) using AP-clamp in rabbit ventricular myocytes. As K+ may accumulate at rapid heart rates during sympathetic stimulation, we also examined the effect of isoproterenol on these K+ currents. We found that IK1 was significantly increased in hyperkalemia, whereas the reduction of driving force for K+ efflux dominated over the altered channel gating in case of IKr and IKs. Overall, the markedly increased IK1 in hyperkalemia overcame the relative decreases of IKr and IKs during AP, resulting in an increased net repolarizing current during AP phase 3. β-Adrenergic stimulation of IKs also provided further repolarizing power during sympathetic activation, although hyperkalemia limited IKs upregulation. These results indicate that facilitation of IK1 in hyperkalemia and β-adrenergic stimulation of IKs represent important compensatory mechanisms against AP prolongation and arrhythmia susceptibility.

On sait que l’hyperkaliémie se produit dans diverses situations, y compris pendant l’exercice physique vigoureux. Dans le cœur, l’hyperkaliémie est associée avec une diminution de la durée du potentiel d’action (PA), qui est attribuée à des canaux K+ dont les propriétés de « gating » sont altérées. Toutefois, on ne sait toujours pas comment l’hyperkaliémie entraîne des variations dans le profil de chacun des courants K+ à la base du PA cardiaque. Par conséquent, nous avons enregistré les principaux courants K+ (courant à rectification entrante (IK1); courants à rectification rapide et lente (IKr et IKs, respectivement)) à l’aide de la technique de clampage du PA dans des myocytes ventriculaires de lapin. Comme les ions K+ peuvent s’accumuler à des fréquences cardiaques élevées pendant une stimulation sympathique, nous avons aussi étudié l’effet de l’isoprotérénol sur ces courants K+. Nous avons observé qu’IK1 était nettement augmenté en hyperkaliémie, tandis que la diminution de la force motrice de l’efflux de K+ dominait comparativement au défaut de « gating » des canaux dans le cas d’IKr et d’IKs. Dans l’ensemble, l’augmentation marquée d’IK1 en hyperkaliémie parvenait à contrer la diminution relative d’IKr et d’IKs pendant le PA, entraînant une augmentation nette des courants de repolarisation pendant la phase 3 du PA. La stimulation β-adrénergique d’IKs fournissait aussi une puissance de repolarisation supplémentaire pendant l’activation sympathique, même si l’hyperkaliémie limitait la régulation à la hausse d’IKs. Ces résultats montrent que la facilitation d’IK1 en hyperkaliémie et la stimulation β-adrénergique d’IKs représentent des modes d’action compensatoires importants contre l’augmentation de la durée du PA et la susceptibilité aux arythmies. [Traduit par la Rédaction]

Keywords: action potential voltage-clamp; arrhythmia; arythmie; canaux potassiques; cellular electrophysiology; cœur; exercice physique; heart; hyperkalemia; hyperkaliémie; physical exercise; potassium channels; stimulation sympathique; sympathetic stimulation; voltage-clamp du potentiel d’action; électrophysiologie cellulaire.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest

The authors declare that there is no conflict of interest associated with this work.

Figures

Fig. 1.
Fig. 1.
Shortening of ventricular action potential (AP) in hyperkalemia. (A) Representative ventricular APs at 1 Hz pacing in either 4 or 8 mM [K+]o. Pipette solution contained 10 mM BAPTA. AP upstroke and its derivative (dV/dt) are enlarged in insets. (B) AP duration measured at 90% repolarization (APD90) was significantly decreased in hyperkalemia in a reverse-rate dependent manner. (C) Depolarization of resting membrane potential (Vrest) followed the change in Nernst-potential for K+, which led to a decrease in peak voltage of the AP overshoot (Vpeak). (D) Maximal upstroke velocity (dV/dtmax) significantly decreased, while maximal rate of repolarization (−dV/dtmax) significantly increased in hyperkalemia. Columns/symbols and bars represent mean ± SEM. n = 11 cells from 4 animals. Student’s paired t test. ***, p < 0.001. [Color online.]
Fig. 2.
Fig. 2.
Outward IK1 is significantly increased in hyperkalemia. (A) Representative traces and IV relationships of 100 μM Ba2+-sensitive inward rectifier K+ current (IK1) in a rabbit ventricular myocyte (applied voltage protocol is shown in the inset). [Ca2+]i was buffered to nominally zero by 10 mM BAPTA in the pipette solution. IKr, IKs, L-type Ca2+, and voltage-gated Na+ currents were inhibited using 1 μM E-4031, 1 μM HMR-1556, 10 μM nifedipine, and 10 μM tetrodotoxin, respectively. (B) Hyperkalemia increased the peak outward current. (C) The shift in reversal potential followed the change in the Nernst-potential for K+. The voltage where the outward current reached its peak density was more positive in high [K+]o. (D) Both inward and outward IK1 (measured at −160 and −50 mV, respectively) were significantly increased in hyperkalemia. Columns and bars represent mean ± SEM. n = 18 cells from 6 animals. Student’s paired t test. ***, p < 0.001. [Color online.]
Fig. 3.
Fig. 3.
Altered K+ current profiles under action potential (AP)-clamp in hyperkalemia and β-adrenergic stimulation. (A) IK1 traces (mean ± SEM) recorded under AP-clamp in physiological (4 mM) and elevated (8 mM) [K+]o. A prerecorded, typical rabbit ventricular AP (shown above) was used as voltage command in all AP-clamp experiments (canonical AP-clamp) at 2 Hz pacing frequency. IK1 was measured as 100 μM Ba2+-sensitive current. [Ca2+]i was buffered using 10 mM BAPTA in the pipette, whereas Ca2+ and Na+ channels were inhibited using 10 μM nifedipine and 10 μM tetrodotoxin, respectively. Diastolic IK1 in 8 mM [K+]o is out of range. (B) IKr traces (mean ± SEM) were recorded under AP-clamp using 1 μM E-4031. (C) IKs traces (mean ± SEM) recorded under AP-clamp using 1 μM HMR-1556. (D–F) IK1, IKr, and IKs traces recorded (mean ± SEM) in the presence of 10 nM isoproterenol (ISO) in 4 and 8 mM [K+]o. (G–I) Peak current densities. IK1 peak density was significantly increased in 8 mM [K+]o both in basal conditions and following ISO stimulation. IKr was decreased in 8 mM [K+]o and its density was unchanged by ISO stimulation. IKs was significantly upregulated following ISO stimulation; however, the increase in IKs amplitude was attenuated in 8 mM [K+]o. Columns and bars represent mean ± SEM. n refers to cells/animals measured in each group. Two-way ANOVA with Bonferroni post hoc test. *, p < 0.05; ***, p < 0.001; NS, not significant. [Color online.]
Fig. 4.
Fig. 4.
Relative contributions of each K+ current in adaptation to hyperkalemia and β-adrenergic stimulation. (A) Net charges of IKr, IKs, and IK1 in 4 and 8 mM [K+]o under control and in the presence of 10 nM isoproterenol (ISO). (B) Relative contributions and magnitudes of the main K+ currents during action potential (AP) phase 3 are compared in different phase of the repolarization process in 4 and 8 mM [K+]o. Upregulation of IK1 overcomes the decreases of IKr and IKs during AP phase 3 measured at −20 and −60 mV. (C) β-Adrenergic stimulation significantly increased net repolarizing current via IKs upregulation; however, the relative contribution of IK1 was still dominant in 8 mM [K+]o vs. 4 mM [K+]o. Columns represent mean current densities. [Color online.]

References

    1. Alagem N, Dvir M, and Reuveny E 2001. Mechanism of Ba2+ block of a mouse inwardly rectifying K+ channel: differential contribution by two discrete residues. J. Physiol 534(2): 381–393. doi:10.1111/j.1469-7793.2001.00381.x. - DOI - PMC - PubMed
    1. Albert CM, Mittleman MA, Chae CU, Lee IM, Hennekens CH, and Manson JE 2000. Triggering of sudden death from cardiac causes by vigorous exertion. N. Engl. J. Med 343(19): 1355–1361. doi:10.1056/NEJM200011093431902. - DOI - PubMed
    1. Banyasz T, Horvath B, Jian Z, Izu LT, and Chen-Izu Y 2011. Sequential dissection of multiple ionic currents in single cardiac myocytes under action potential-clamp. J. Mol. Cell. Cardiol 50(3): 578–581. doi:10.1016/j.yjmcc.2010.12.020. - DOI - PMC - PubMed
    1. Banyasz T, Jian Z, Horvath B, Khabbaz S, Izu LT, and Chen-Izu Y 2014. Beta-adrenergic stimulation reverses the I Kr-I Ks dominant pattern during cardiac action potential. Pflugers Arch. 466(11): 2067–2076. doi:10.1007/s00424-014-1465-7. - DOI - PMC - PubMed
    1. Bebarova M, Horakova Z, and Kula R 2017. Addictive drugs, arrhythmias, and cardiac inward rectifiers. Europace, 19(3): 346–355. doi:10.1093/europace/euw071. - DOI - PubMed